PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of long-term storage on the mechanical properties of composites based on polyamide 10.10 derived from renewable sources

Autorzy
Identyfikatory
Warianty tytułu
PL
Wpływ długotrwałgo przechowywania na właściwości mechaniczne kompozytów na osnowie poliamidu 10.10 z surowców naturalnych
Języki publikacji
EN
Abstrakty
EN
This paper presents an investigation in which bio-based polyamide 10.10 was used as a polymer matrix. Composites were reinforced in three different ways including: 10 wt% and 30 wt% of walnut shell flour as well as 30 wt% of glass fibres. The composites were prepared by injection moulding. Mechanical properties (tensile strength (σt), modulus of elasticity (Et) as well as flexural modulus (Et) and flexural stress at 3.5% strain (σt)) were obtained. The mechanical data of analysis showed that tensile strength and tensile stiffness significantly decreased after four years of storage. Another state was noted for the bending module, where the decrease in value was at a level of 5% compared to results obtained immediately after injection. Additionally, SEM images were taken to assess the distribution of particles and the adhesion of fillers to the matrix. Keywords: bio-based composite, mechanical properties, injection moulding, Hiprolon 211.
PL
W artykule zostały opisane kompozyty wytworzone na osnowie całkowicie biopochodnego poliamidu 10.10 wzmocnionego zmielonymi łupinami orzecha włoskiego w ilości masowej 10% oraz 30% jak również kompozyty z dodatkiem 30% masowej ilości włókien szklanych. Zbadano właściwości mechaniczne (wytrzymałość na rozciąganie (σt), moduł sprężystości (Et) oraz moduł sprężystości przy zginaniu (Et) i naprężenie zginające przy naprężeniu 3,5% (σt)) wytworzonych kompozytów. Dane analizy mechanicznej wykazały, że wytrzymałość na rozciąganie oraz sztywność kompozytów po czterech latach przechowywania znacznie spadły. Jednakże zaobserwowany został niewielki spadek wartości modułu zginania na poziomie 5% w porównaniu do wyników uzyskanych dla kompozytów bezpośrednio po wtrysku. Dodatkowo w celu oceny rozkładu cząstek i adhezji napełniaczy do matrycy wykonano zdjęcia SEM.
Rocznik
Strony
167--175
Opis fizyczny
Bibliogr. 21 poz., tab., wykr., il.
Twórcy
autor
  • Institute of Material Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
autor
  • Institute of Material Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
Bibliografia
  • [1] european-bioplastics.org/market (access: 24.05.2018).
  • [2] Vold J.L., Ulven C.A., Chisholm B.J., Torrefied biomass filled polyamide biocomposites: mechanical and physical property analysis, Journal of Materials Science, 2015, 725–732.
  • [3] Espinach F.X., Delgado-Aguilar M., Puig J., Julian F., Boufi S., Mutjé P., Flexural properties of fully biodegradable alpha-grass fibers reinforced starch-based thermoplastics, Composites Part B: Engineering, 2015, 98–106.
  • [4] Oliver-Ortega H., Granda L.A., Espinach F.X., Delgado-Aguilar M., Duran J., Mutjé P., Stiffness of bio-based polyamide 11 reinforced with softwood stone ground-wood fibres as an alternative to polypropylene-glass fibre composites, European Polymer Journal, 2016, 481–489.
  • [5] Alves C., Ferrão P.M.C., Silva A.J., Reis L.G., Freitas M., Rodrigues L.B., Alves D.E., Ecodesign of automotive components making use of natural jute fiber composites, Journal of Cleaner Production, 2010, 313–327.
  • [6] Heitzmann M.T., Veidt M., Ng C.T., Lindenberger B., Hou M., Truss R., Liew C. K., Single-Plant Biocomposite from Ricinus Communis: Preparation, Properties and Environmental Performance, Journal of Polymers and the Environment, 2013, 366–374.
  • [7] Bledzki A.K., Reihmane S., Gassan J., Thermoplastics reinforced with wood fillers: a literature review, Polymer Plastic Technolgy Engineering, 1998, 451–468.
  • [8] Velthoven J.L.J., Gootjes L., Noordover B.A.J., Meuldijk J., Bio-based, amorphous polyamides with tunable thermal properties, European Polymer Journal, 2015, 57–66.
  • [9] McHenry E., Stachurski Z.H., Composite materials based on wood and nylon fibre, Composites Part A: Applied Science and Manufacturing, 2003, 171–181.
  • [10] Sui G., Fuqua M.A., Ulven C.A., Zhong W.H., A plant fiber reinforced polymer composite prepared by a twin-screw extruder, Bioresources Technology, 2009, 1246–1251.
  • [11] Orue A., Eceiza A., Arbelaiz A., Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibres, Industrial Crops and Products, 2018, 170–180.
  • [12] Awal A., Rana M., Sain M., Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites, Mechanics of Materials, 2015, 87–95.
  • [13] Nguyen T., Zavarin E., Barral II E.M., Thermal analysis of lignocellulosic materials. Part I. Unmodified materials, Journal of Macromolecular Science Part C Polymer Reviews, 1981, 1–65.
  • [14] Zierdt P.,Theumer T., Kulkarni G., Däumlich V., Klehm J., Hirsch U., Weber A., Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers, Sustainable Materials and Technologies, 2015, 6–14.
  • [15] Duigou L., Bourmaud A., Gourier C., Baley C., Multi-scale shear properties of flax fibre reinforced polyamide 11 biocomposites, Composites: Part A, 2016, 123–129.
  • [16] Feldmann M., Bledzki A.K., Bio-based polyamides reinforced with cellulosic fibres – Processing and properties, Composites Science and Technology, 2014, 113–120.
  • [17] Battegazzore D., Salvetti O., Frache A., Peduto N., De Sio A., Marino F., Thermomechanical properties enhancement of bio-polyamides (PA10.10 and PA6.10) by using rice husk ash and nanoclay, Composites: Part A, 2016, 193–201.
  • [18] Czarnecka S., Kuciel S., Polyamides composites with nanosilver particles for medical application, Bachelor’s thesis, Cracow University of Technology, 2014.
  • [19] Gordobil O., Delucis R., Egüés I., Labidi J., Kraft lignin as filler in PLA to improve ductility and thermal properties, Industrial Crops and Products, 2015, 46–53.
  • [20] Elanchezhian C., Ramnath B.V., Ramakrishnan G., Rajendrakumar M., Naveenkumar V., Saravanakumar M..K., Review on mechanical properties of natural fiber composites Materials Today: Proceedings, 2018, 1785–1790.
  • [21] Sanjay M.R., Arpitha G.R., Yogesha B., Study on Mechanical Properties of Natural - Glass Fibre Reinforced Polymer Hybrid Composites: A Review, Materials Today: Proceedings, 2015, 2959–2967.
Uwagi
EN
Section "Mechanics"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e52a9904-109e-44a2-98ce-fd8de8995237
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.