PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Lignocellulosic fraction of the pericarps of the acorns of Quercus suber and Quercus ilex: isolation, characterization, and biosorption studies in the removal of copper from aqueous solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pericarps of Algerian Quercus ilex (Q. ilex) and Quercus suber (Q. suber) were used as copper adsorbents in artifi cially contaminated solutions. Exposing accessible lignocellulosic binding sites enhanced adsorption. The lignocellulosic fractions of Q. suber and Q. ilex (36.47±9.1 and 47.66±9.3, respectively) were characterized by FTIR before and after adsorption. The aim was to identify the functional groups adsorbing Cu(II). SEM/EDX determined lignocellulose surface morphology and composition. The amount of adsorbent-bound Cu(II) increased with initial [Cu(II)]. Cu(II) adsorption range was 23.59–48.06 mg.g–1 for Q. Suber and 22.56–38.19 mg.g–1 for Q. ilex when [Cu(II)] was 100–500 mg.L–1. Adsorption isotherms and Langmuir and Freundlich models of the Q. suber and Q. ilex lignocellulosic fractions indicated natural Cu(II)adsorption capacities (Qmax) of 53.76 mg.g–1 and 36.06 mg.g–1 and KF of 5.9 mg.g–1 and 7.43 mg.g–1, respectively.
Słowa kluczowe
Rocznik
Strony
40--47
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Laboratoire des Productions, Valorisations Végétales et Microbiennes, (LP2VM), Faculté des Sciences de la Nature et de la Vie, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, BP 1505, El M’Naouar, 31000 Oran, Algeria
autor
  • Laboratoire des Productions, Valorisations Végétales et Microbiennes, (LP2VM), Faculté des Sciences de la Nature et de la Vie, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, BP 1505, El M’Naouar, 31000 Oran, Algeria
  • Laboratoire de Biotoxicologie, Pharmacognosie et Valorisation Biologique des Plantes (LBPVBP), Faculté des sciences, Université Dr. Tahar Moulay de Saïda, BP 138 cité ENNASR, 20000 Saïda, Algeria
  • Département de Biologie, Faculté des Sciences, Université Dr. Moulay Tahar de Saida, BP 138 cité ENNASR, 20000 Saida, Algeria
  • Laboratoire des Productions, Valorisations Végétales et Microbiennes, (LP2VM), Faculté des Sciences de la Nature et de la Vie, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, BP 1505, El M’Naouar, 31000 Oran, Algeria
Bibliografia
  • 1. Afroze, S. & Sen, T.K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 229, 225. DOI: 10.1007/s11270-018-3869-z.
  • 2. Amuda, O.S., Amoo, I.A., Ipinmoroti, K.O. & Ajayi, O.O.(2006). Coagulation/fl occulation process in the removal of trace metals present in industrial wastewater. J. Appl. Sci. Environ.Manage.10(3), 159–162. DOI: 10.4314/jasem.v10i3.17339.
  • 3. Wang, J.L. & Xu, L.J. (2012). Advanced oxidation processes and application. Crit. Rev. Environ. Sci. Technol. 42, 251–325. DOI: 10.1080/10643389.2010.507698.
  • 4. Rivas, B.L. & Palencia, M. (2011). Removal-concentration of pollutant metalions by water-soluble polymers in conjunction with double emulsion systems: A new hybrid method of membrane-based separation. Sep. Purif. Technol. 81(3), 435–443. DOI: 10.1016/j.seppur.2011.08.021.
  • 5. Saleh, T.A. & Gupta, V.K. (2014). Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Adv. Colloid. Interface Sci. 211, 93–101. DOI: 10.1016/j.cis.2014.06.006.
  • 6. Rubio, J., Souza, M.L. & Smith, R.W. (2002). Overview of flotation as a wastewater treatment technique. Miner. Eng. 15(3), 139–155. DOI: 10.1016/S0892-6875(01)00216-3.
  • 7. Agwaramgbo, L., Magee, N., Nunez, S. & Mitt, K. (2013). Biosorption and chemical precipitation of lead using biomaterials, molecular sieves, and chlorides, carbonates, and sulfates of Na & Ca. J. Environ. Prot. 4(11), 1251–1257. DOI: 10.4236/jep.2013.411145.
  • 8. Gähr, F., Hermanutz, F. & Oppermann, W. (1994). Ozonation-an important technique to comply with new German laws for textile wastewater treatment. Water Sci. Technol. 30(3), 255–263. DOI: 10.2166/wst.1994.0115.
  • 9. Abdel-Aziz, M.H., Nirdosh, I. & Sedahmed, G.H. (2013). Ion-exchange-assisted electrochemical removal of heavy metals from dilute solutions in a stirred-tank electrochemical reactor: a mass-transfer study. Ind. Eng. Chem. Res. 52(33), 11655–11662. DOI: 10.1021/ie400548w.
  • 10. Dean, J.G., Bosqui, F.L. & Lanouette, K.H. (1972). Removing heavy metals from waste water. Environ. Sci. Technol. 6(6), 518–522. DOI: 10.1021/es60065a006.
  • 11. Lin, S.H. & Juang, R.S. (2002). Removal of free and chelated Cu (II) ions from water by a nondispersive solvent extraction process. Water Res. 36, 3611–3619. DOI: 10.1016/S0043-1354(02)00074-X.
  • 12. Tao, H.C., Lei, T., Shi, G., Sun, X.N., Wei, X.Y., Zhang, L.J. & Wu, W.M.(2014). Removal of heavy metals from flyash leachate using combined bioelectrochemical systems and electrolysis. J. Hazard. Mater. 264, 1–7. DOI: 10.1016/j.jhazmat.2013.10.057.
  • 13. Sreeprasad, T.S., Maliyekkal, S. M., Lisha, K.P. & Pradeep, T. (2011). Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard. Mater. 186(1), 921–931. DOI: 10.1016/j.jhazmat.2010.11.100.
  • 14. Nielsen, P.B., Christensen, T.C. & Vendrup, M. (1997). Continuous removal of heavy metals from FGD wastewater in a fluidised bed without sludge generation. Water Sci. Technol. 36(2–3), 391–397. DOI: 10.1016/S0273-1223(97)00413-7.
  • 15. Ahluwalia, S.S. & Dinesh, G. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores.Technol. 98(12), 2243–2257. DOI: 10.1016/j.biortech.2005.12.006.
  • 16. Bailey, S.E., Olin, T.J., Bricka, R.M. & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Res. 33 (11),2469–2479. DOI: 10.1016/S0043-1354(98)00475-8.
  • 17. Mohan, D., Sarswat, A., Ok, Y.S., & Pittman, C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review. Biores. Technol. 160, 191–202. DOI: 10.1016/j.biortech.2014.01.120.
  • 18. Vikrant, K., Giri, B.S., Raza, N., Roy, K., Kim, K.H., Rai, B.N., & Singh, R.S. (2018). Recent advancements in bioremediation of dye: current status and challenges. Biores. Technol. 253, 355–367. DOI: 10.1016/j.biortech.2018.01.029.
  • 19. Robati, D., Mirza, B., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S. & Gupta, V.K., (2016). Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 284, 687–697. OI: 10.1016/j.cej.2015.08.131.
  • 20. Gupta, V.K., Nayak, A., Agarwal, S. & Tyagi, I. (2014). Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J. Colloid. Interface Sci. 417, 420–430. DOI: 10.1016/j.jcis.2013.11.067.
  • 21. Barka, N., Abdennouri, M., El-Makhfouk, M. & Qoursal S. (2013). Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia fi cus indica) cladodes. J. Environ. Chem. Eng. 1(3), 144–149. DOI: 10.1016/j.jece.2013.04.008.
  • 22. Gupta, V.K. & Rastogi, A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyraspecies: kinetics and equilibrium studies. J. Hazard. Mater. 2008;152(1), 407–414. DOI: 10.1016/j.jhazmat.2007.07.028.
  • 23. Afroze, S. & Sen, T.K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents.Water Air Soil Pollut. 229(7), 225. DOI: 10.1007/s11270-018-3869-z.
  • 24. Gupta, V.K. & Saleh, T.A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview. Environ. Sci. Pollut. Res. 20(5), 2828–2843. DOI: 10.1007/s11356-013-1524-1.
  • 25. Ahmaruzzaman, M. & Gupta, V. K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 50(24), 13589–13613. DOI: 10.1021/ie201477c.
  • 26. Hao, X., Mohamad, O.A., Xie, P., Rensing, C. & Wei, G. (2014). Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae. Separ. Sci.Technol. 49(3), 376–387. DOI: 10.1080/01496395.2013.843195.
  • 27. Jakóbik-Kolon, A., Mitko, K. & Bok-Badura, J. (2017). Zinc sorption studies on pectin-based biosorbents. Materials 10(7), 844. DOI: 10.3390/ma10070844.
  • 28. Haroon, H., Gardazi, S.M.H., Butt, T.A., Pervez, A., Mahmood, Q. & Bilal, M. (2017). Novel lignocellulosic wastes for comparative adsorption of Cr(VI): equilibrium kinetics and thermodynamic studies. Pol. J. Chem. Technol. 19(2),6–15. DOI: 10.1515/pjct-2017-0021.
  • 29. Marchetti, V., Clément, A., Gérardin, P. & Loubinoux, B. (2000). Synthesis and use of esterifi ed sawdusts bearing carboxyl group for removal of cadmium(II) from water.Wood Sci.Technol. 34(2), 167–173. DOI: 10.1007/s002260000040.
  • 30. Hachem, K., Astier, C., Chaleix, V., Faugeron, C., Krausz, P., Kaid-Harche, M. & Gloaguen, V. (2012). Optimization of lead and cadmium binding by oxidation of biosorbent polysaccharidic moieties. Water Air Soil Pollut. 223(7), 3877–3885. DOI: 10.1007/s11270-012-1156-y.
  • 31. Genevois, N., Villandier, N., Chaleix, V., Poli, E., Jauberty, L. & Gloaguen, V. (2017). Removal of cesium ion from contaminated water: improvement of Douglas fi r bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation. Ecol. Eng. 100, 186–193. DOI: 10.1016/j.ecoleng.2016.12.012.
  • 32. Astier, C., Chaleix, V., Faugeron, C., Ropartz, D., Gloaguen, V. & Krausz, P. (2010). Grafting of aminated oligogalacturonans onto Douglas fi r barks. a new route for the enhancement of their lead(II) binding capacities. J. Hazard. Mater. 182(1), 279–285. DOI: 10.1016/j.jhazmat.2010.06.027.
  • 33. Yeo, T.H.C., Tan, I.A.W. & Abdullah, M.O. (2012). Development of adsorption air-conditioning technology using modified activated carbon – A review. Renew. Sustain. Energy. Rev. 16(5), 3355–3363. DOI: 10.1016/j.rser.2012.02.073.
  • 34. Nebagha, K.C., Ziat, K., Rghioui, L., Khayet, M., Saidi, M., Aboumaria, K., El Hourch, A. & Sebti, S. (2015). Adsorptive removal of copper (II) from aqueous solutions using low-cost Moroccan adsorbent. Part I: parameters influencing Cu (II) adsorption. J. Mater. Environ. Sci. 6(11), 3022–3033.
  • 35. Li, Y., Xia, B., Zhao, Q., Liu, F., Zhang, P., Du, Q., Wang, D., Li, D., Wang, Z. & Xia, Y.(2011). Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. J. Environ. Sci. 23(3), 404–411. DOI: 10.1016/S1001-0742(10)60442-1.
  • 36. Bailey, R.W. (1967). Quantitative studies of ruminant digestion. NZ J. Agric. Res. 10(1):15–32. DOI: 10.1080/00288233.1967.10423074.
  • 37. Carpita, N.C. (1984). Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali. Phytochemistry 23(5), 1089–1093. DOI: 10.1016/s0031-9422(00)82615-1
  • 38. Mehlig, J. (1941). Colorimetric determination of copper with ammonia. Ind. Eng. Chem. Anal. Ed. 13(8), 533–535. DOI: 10.1021/i560096a006.
  • 39. Hameed, B.H., Mahmoud, D.K. & Ahmad, A.L. (2008). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. J. Hazard Mater. 158(1), 65–72. DOI: 10.1016/j.jhazmat.2008.01.034.
  • 40. Dawczynski, C., Schubert, R. & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fi bre in edible seaweed products. Food Chem. 103(3), 891–899. DOI: 10.1016/j.foodchem. 2006.09.041.
  • 41. El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharmaceut. J. 18(1), 1–25. DOI: 10.1016/j.jsps.2009.12.001.
  • 42. Proctor, M.C.F. (2000). The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol. 151(1), 41–49. DOI: 10.1023/A:1026517920852.
  • 43. Yargıç, A. Ş., Yarbay Şahin, R. Z., Özbay, N., & Önal, E. (2015). Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste(Solanum lycopersicum). J. Clean. Prod. 88, 152–159. DOI: 10.1016/j.jclepro.2014.05.087.
  • 44. Vafakhah, S., Bahrololoom, M. & Saeedikhani, M. (2016). Adsorption kinetics of cupric ions on mixture of modified corn stalk and modifi ed tomato waste. J. Water Res. Prot. 8(13), 1238–1250. DOI: 10.4236/jwarp.2016.813095.
  • 45. Reddad, Z., Gerente, C., Andres, Y. & Le Cloirec, P. (2002). Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ. Sci. Technol. 36(9), 2067–2073. DOI: 10.1021/es0102989.
  • 46. Moreira, V.R., Lebron, Y.A.R., Freire, S.J., Santos, L.V.S., Palladino, F., Jacob, R.S. (2019). Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies. Microchem. J. 145, 119–129. DOI: 10.1016/j.microc.2018.10.027.
  • 47. Lacerda, E.C.M., dos Passos Galluzzi Baltazar, M., dos Reis, T.A., do Nascimento, C.A.O., Côrrea, B., Gimenes, L.J. (2019). Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron. Environ. Monit. Assess. 191, 247. DOI: 10.1007/s10661-019-7399-y.
  • 48. Mokkapati, R.P., Mokkapati, J. & Ratnakaram, V.N. (2016). Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminata, Casuarina equisetifolia L. and Sorghum bicolor. Pol. J. Chem. Technol. 18, 68–77. DOI: 10.1515/pjct-2016-0031.
  • 49. Calero, M., Blázquez, G., Dionisio-Ruiz, E., Ronda, A. & Martín-Lara, M.A.(2013). Evaluation of biosorption of copper ions onto pinion shell. Desalination Water Treat. 51, 2411–2422. DOI: 10.1080/19443994.2012.747472.
  • 50. Faix, O. (1992). Fourier transform infrared spectroscopy. In S.Y. Lin & C.W. Dence(eds.),Methods in lignin chemistry (pp. 233-241). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-74065-7_16.
  • 51. Collier, W.E., Schultz, T.P. & Kalasinsky, V.F. (1992). Infrared study of lignin: reexamination of aryl-alkyl ether C—O stretching peak assignments. Holzforschung 46(6), 523–528. DOI: 10.1515/hfsg.1992.46.6.523.
  • 52. Ramavandi, B. & Asgari, G. (2018). Comparative study of sun-dried and oven-dried Malva sylvestris biomass for highrate Cu(II) removal from waste water. Proc. Saf. Environ. Prot. 116, 61–73. DOI: 10.1016/j.psep.2018.01.012.
  • 53. Sinha, A., Singh, V.N., Mehta, B.R. & Khare, S.K. (2011). Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillussp. cells simultaneous to its bioremediation. J. Hazard. Mater. 192(2), 620–627. DOI: 10.1016/j.jhazmat.2011.05.103.
  • 54. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403. DOI: 10.1021/ja02242a004.
  • 55. Freundlich, H. (1907). Über die adsorption in lösungen. Z. Für Phys. Chem. 57, 385–470. DOI: 10.1515/zpch-1907-5723.
  • 56. Yargıç, A.Ş., Yarbay Şahin, R.Z., Özbay, N. & Önal, E. (2015). Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. J. Clean. Prod. 88, 152–159. DOI: 10.1016/j.jclepro.2014.05.087.
  • 57. Haroon, H., Gardazi, S.M.H., Butt, T.A., Pervez, A., Mahmood, Q. & Bilal, M.(2017). Novel lignocellulosic wastes for comparative adsorption of Cr(VI): equilibrium kinetics and thermodynamic studies. Pol. J. Chem. Technol. 19(2), 6–15. DOI: 10.1515/pjct-2017-0021.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e52a7664-7ab3-412b-950b-67816ea932c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.