PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure Evolution Through Cryogenic Rolling of Ultra-High Purity Titanium Produced by Electron Beam Melting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, crystal grain refinement of pure titanium manufactured by electron beam melting through cryogenic rolling was performed. The effect of rolling in a cryogenic atmosphere on average grain size was investigated. Cryogenic atmosphere rolling was confirmed to be smaller than normal temperature rolling. Electron back scatter diffraction (EBSD) confirmed the presence of oriented crystal grains in the material. The deformation, temperature, and stress generated during rolling were calculated using 3D simulation. Finite element analysis (FEM) modeling was used to analyze the trend of average grain size change during the heat treatment of the rolled samples.
Słowa kluczowe
Twórcy
autor
  • Hanbat National University, Department of Materials Science and Engineering, Yuseong-gu, Daejeon 34158, Republic of Korea
  • Hanbat National University, Department of Materials Science and Engineering, Yuseong-gu, Daejeon 34158, Republic of Korea
  • RareMetal R&D Group, Korea Institute of Industrial Technology, 12, Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Republic of Korea
  • Hanbat National University, Department of Materials Science and Engineering, Yuseong-gu, Daejeon 34158, Republic of Korea
  • Hanbat National University, Department of Materials Science and Engineering, Yuseong-gu, Daejeon 34158, Republic of Korea
Bibliografia
  • [1] Y.L. Zhou, M. Niinomi, T. Akahori, M. Nakai, H. Fukui, Comparison of various properties between titanium-tantalum alloy and pure titanium for biomedical applications. Materials Transactions 48, 380-384 (2007). DOI: https://doi.org/10.2320/matertrans.48.380
  • [2] D. Banerjee, J. Williams, Perspectives on titanium science and technology. Acta Materialia 61, 844-879 (2013).
  • [3] E. Marin, M. Pressacco, S. Fusi, A. Lanzutti, S. Turchet, l. Fedrizzi, Characterization of grade 2 commercially pure Trabecular Titanium structures. Materials Science and Engineering C 33, 2648-2656 (2013). DOI: https://doi.org/10.1016/j.msec.2013.02.034
  • [4] C.W. Park, J.W. Park, K.C. Jung, S.-H. Lee, S.-H. Kim, J.H. Kim, Joint Properties of Inconel 718 Additive Manufactured on Ti-6Al-4V by FGM method. J. Korean Powder Metall. Inst. 28, 417-422 (2021). DOI: https://doi.org/10.4150/KPMI.2021.28.5.417
  • [5] M.A. Lodes, R. Guschlbauer, C. Körner, Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Materials Letters 143, 298-301 (2015). DOI: https://doi.org/10.1016/j.matlet.2014.12.105
  • [6] R. Guschlbauer, S. Momeni, F. Osmanlic, C. Körner, Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties. Materials Characterization 143, 163-170 (2018). DOI: https://doi.org/10.1016/j.matchar.2018.04.009
  • [7] J. Otubo, O.D. Rigo, C.M. Neto, P.R. Mei, The effects of vacuum induction melting and electron beam melting techniques on the purity of NiTi shape memory alloys. Materials Science and Engineering A 438-440, 679-682 (2006). DOI: https://doi.org/10.1016/j.msea.2006.02.171
  • [8] K. Yamanaka, W. Saito, M. Mori, H. Matsumoto, S. Sato, A. Chiba, Abnormal grain growth in commercially pure titanium during additive manufacturing with electron beam melting. Materialia 6, 100281 (2019). DOI: https://doi.org/10.1016/j.mtla.2019.100281
  • [9] D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Materialia 60, 3849-3860 (2012). DOI: https://doi.org/10.1016/j.actamat.2012.04.006
  • [10] H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering A 593, 170-177 (2014). DOI: https://doi.org/10.1016/j.msea.2013.11.038
  • [11] K. Yamanaka, W. Saito, M. Mori, H. Matsumoto, A. Chiba, Preparation of weak-textured commercially pure titanium by electron beam melting. Additive Manufacturing 8, 105-109 (2015). DOI: https://doi.org/10.1016/j.addma.2015.09.007
  • [12] J.-M. Oh, J. Yang, J. Yoon, J.-W. Lim, Effective Method for Preparing Low-Oxygen Titanium Ingot by Combined Powder Deoxidation and Vacuum Arc Melting Processes. Korean J. Met. Mater. 59, 149-154 (2021). DOI: https://doi.org/10.3365/KJMM.2021.59.3.149
  • [13] M. Vopsaroiu, M.J. Thwaites, S. Rand, P.J. Grundy, K. O’Grady, Novel sputtering technology for grain-size control. IEEE Transactions on Magnetics 40, 4, 2443-2445 (2004). DOI: https://doi.org/10.1109/TMAG.2004.828971
  • [14] S. Jurac, R.E. Johnson, B. Donn, Monte Carlo Calculations of the Sputtering of Grains: Enhanced Sputtering of Small Grains. The Astrophysical Journal 503, 247-252 (1998). DOI: https://doi.org/10.1086/305994
  • [15] M. Kumar, S.A. Khan, F. Singh, A. Tripathi, D.K. Avasthi, A.C. Pandey, Influence of grain size on electronic sputtering of LiF thin films, Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms 256, 328-332 (2007). DOI: https://doi.org/10.1016/j.nimb.2006.12.021
  • [16] T. Akatsu, C. Scheu, T. Wagner, T. Gemming, N. Hosoda, T. Suga, M. Rühle, Morphology and microstructure of the Ar+-ion sputtered (0001) α-Al2O3 surface. Applied Surface Science 165, 159-165 (2000). DOI: https://doi.org/10.1016/S0169-4332(00)00376-7
  • [17] W.A. Abdallah, A.E. Nelson, Characterization of MoSe2(0001) and ion-sputtered MoSe 2 by XPS. Journal of Materials Science 40, 2679-2681 (2005). DOI: https://doi.org/10.1007/s10853-005-2104-7
  • [18] S.F. Chichibu, T. Yoshida, T. Onuma, H. Nakanishi, Helicon-wave-excited-plasma sputtering epitaxy of ZnO on sapphire (0001) substrates. Journal of Applied Physics 91, 874-877 (2002). DOI: https://doi.org/10.1063/1.1426238
  • [19] G. Sun, J. Xu, P. Harrowell, The mechanism of the ultrafast crystal growth of pure metals from their melts. Nature Materials 17, 881-886 (2018). DOI: https://doi.org/10.1038/s41563-018-0174-6
  • [20] E.A. Holm, S.M. Foiles, How grain growth stops: a mechanism for grain-growth stagnation in pure materials. Science 328, 1138-1141 (2010). DOI: https://doi.org/10.1126/science.1187833
  • [21] N. Bozzolo, N. Dewobroto, T. Grosdidier, F. Wagner, Texture evolution during grain growth in recrystallized commercially pure titanium. Materials Science and Engineering A. 397, 346-355 (2005). DOI: https://doi.org/10.1016/j.msea.2005.02.049
  • [22] Y. Wang, T. Jiao, E. Ma, Dynamic Processes for Nanostructure Development in Cu after Severe Cryogenic Rolling Deformation. Materials Transactions 44, 1926-1934 (2003). DOI: https://doi.org/10.2320/matertrans.44.1926
  • [23] S. Jin, H. Liu, R. Wu, F. Zhong, L. Hou, J. Zhang, Combination effects of Yb addition and cryogenic-rolling on microstructure and mechanical properties of LA141 alloy. Materials Science and Engineering A 788, 139611 (2020). DOI: https://doi.org/10.1016/j.msea.2020.139611
  • [24] W. Cheng, W. Liu, S. Yuan, Deformation behavior of Al-Cu-Mn alloy sheets under biaxial stress at cryogenic temperatures. Materials Science and Engineering A 759, 357-367 (2019). DOI: https://doi.org/10.1016/j.msea.2019.05.047
  • [25] G. Shin, Y. Park, D.W. Kim, J.H. Yoon, J.H. Kim, Effect of Post-Weld Heat Treatment on Microstructure and Hardness Evolution of Functionally Graded Materials Produced by Direct Energy Deposition. Korean J. Met. Mater. 59, 81-98 (2021). DOI: https://doi.org/10.3365/KJMM.2021.59.2.81
  • [26] T.J. Collins, ImageJ for microscopy. BioTechniques 43, S25-S30 (2007). DOI: https://doi.org/10.2144/000112517
  • [27] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675 (2012). DOI: https://doi.org/10.1038/nmeth.2089
  • [28] J.O. Obiko, F.M. Mwema, M.O. Bodunrin, Finite element simulation of X20CrMoV121 steel billet forging process using the Deform 3D software. SN Appl. Sci. 1, 1044 (2019). DOI: https://doi.org/10.1007/s42452-019-1087-y
  • [29] Abdulkadir Yıldız, Abdullah Kurt, Selçuk Yağmur, Finite element simulation of drilling operation and theoretical analysis of drill stresses with the deform-3D. Simulation Modelling Practice and Theory 104, 102153 (2020). DOI: https://doi.org/10.1016/j.simpat.2020.102153
Uwagi
This work was supported by the Technology Innovation Program (grant number 20010047, “Development of deoxidation refining process using off grade Ti scrap over 100 kg per day for the production of 4N5 grade ingot and utilizing powder technology”) funded by the Ministry of Trade, Industry & Energy, Korea). This study was supported by the Fundamental Research Program of the Korea Institute of Material Science (Grant number PNK8180).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e52996eb-0fa9-4c5d-a100-6aa292a516db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.