PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Inoculants on the Structure and Properties of Thin-Walled Ductile Iron Castings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In many application fields, thin-walled ductile iron castings can compete with castings made from aluminium alloys thanks as their show superior mechanical properties higher stiffness, vibrations damping as well as properties at higher temperatures. As problematic criterion in thin-walled cast-iron castings can be seen the graphitization ability and high sensitivity of the structure and the mechanical properties to the solidification rate. The tests were curried on plate castings with wall thicknesses of 3, 5, and 8 mm, using inoculants based on FeSi70 with different contents of nucleation-active elements as aluminium, calcium, zirconium and magnesium. The inoculation was made by the in-mould method. In the experiments structures were achieved, differing by the graphite dispersity, structure and mechanical properties. The experiments have proved particularly a high sensitivity of the structure and the mechanical properties to the cooling rate of the sample castings. The influence of the inoculant type is less important than the influence of solidification rate.
Rocznik
Strony
90--95
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic
  • Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic
  • Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic
  • Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic
Bibliografia
  • [1] Caldera, M., Chapetti, M., Massone, J.M. & Sikora J.A. (2007). Influence of nodule count on fatique properties of ferritic thin wall ductile iron. Materials Science and Engineering. 23(8), 1000-1004. DOI: 10.1179/174328407 X185910.
  • [2] Stefanescu, D.M., Dix, :.P., Ruxanda, R.E., Corbitt-Coburn, C. & Piwonka, T.S. (2002). Tensile properties of thin wall ductile iron. AFS Transactions. 02-178, 1149-1162, Schaumburg USA: AFS Society.
  • [3] Soedarsono, J.W., Suharno, B. & Sulamet-Ariobimo, R.D. (2011). Effect of casting design to microstructure and mechanical properties of 3 mm TWDI plate. Advance Material Researchs. 415-417, 831-837. https://doi.org/10.4028/www.scientific.net/AMR.415-417.831.
  • [4] Labresque, C. (2003). Production and properties of thin-wall ductile iron castings. International Journal of Cast Metals Research. 16(1-3), 313-317. https://doi.org/10.1080/13640461.2003.11819601.
  • [5] Sulamet-Ariobimo, R.D., Soedersono, J.W. & Soemardi, T.P. (2017). Thin wall ductile iro and n castings. IntechOpen 72117. Advanced Casting Technologies. DOI:10.5772/intechopen.72117.
  • [6] Vijayan, S., Wilson, P. & Prabhakaran, K. (2017). Ultra low-density mullite foams by reaction sintering of thermo-foamed alumina-silica powder dispersion in molten sucrose. Journal of the European Ceramic Society. 37(4), 1657-1664. https://doi.org/10.1016/j.jeurceramsoc.2016.11.025.
  • [7] Stefanescu, D.M., Alonso, G. & Suarez, R. (2020). Recent devepments in understanding nucleation and crystallization of spheroidal grapfite in iron- carbon-silicon alloys. Metals. 1092), 221, 1-39. DOI:10.3390/met10020221.
  • [8] Alonso, G., Larrañaga, P., Stefanescu, D.M., De la Fuente, E., Natxiondo, A. & Suarez, R. (2017). Kinetics of nucleation and growth of graphite at different stages of solidification for spheroidal graphite iron. International Journal of Metalcasting. 11(1), 14- 26. DOI:10.1007/s40962-016-0094-7.
  • [9] Alonso, G., Stefanescu, D.M., Fuente, E., Larrana, P. & Suarez, R. (2018). The influence of trace elements on the nature of the nuclei of graphite ductile iron. Materials Science Forum. 925,78-85. ISSN 1662-9752.
  • [10] Skaland, T. (2005). Nucleation mechanisms in ductile iron. Proceedings of AFS Cast Iron Inoculation Conference. 29-30, September 2005. Schaumburg. USA (pp. 13-30).
  • [11] Skaland, T., Grong, O. & Grong, T. (1993). A model for the graphite formation in ductile cast iron. Metal Transaction. 24A, 2321-2345.
  • [12] Lekakh, S. (2014). Analysis of heterogeneous nucleation in ductile iron. Shape casting. 5th International Symposium. Materials Science, January. 121-128. DOI: 10.1007/978- 3-319- 48130-2_15.
  • [13] Alonso, G., Stefanescu, D.M., Suarez. R. (2020). Effect of antimony on nucleation process of spheroidal graphite iron. AFS Proceedings of the 124th Metalcasting congress. Paper 2020-04.
  • [14] Stefanescu, D.M. (2016). On the crystalization of graphite from liquid iron-carbon-silicon melts. Acta materialia. 107, 102-126. https://doi.org/10.1016/j.actamat.2016.01.047.
  • [15] Stefanescu, D.M. Ruxanda, R. & Dix, L.P. (2003). The metallurgy and tensile mechanical properties of thin wall spheroidal graphite irons. Int. Journal of Cast Metals Research. 16(1-3), 319-324. https://doi.org/10.1080/13640461.2003.11819602.
  • [16] Javaid, A. (2001). In Proceedings of Cast Iron Division, AFS 105th Casting Congress, Dallas, USA.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e51b7c78-6daa-4d1d-96c3-edb700c6687b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.