PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation of fine beryl from quartz via magnetic carriers by the aiding of non-ionic surfactant

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study demonstrated the possibility of separating fine beryl from quartz by using magnetic carrier technology with the presence of non-ionic surfactant (Sorbitan monooleate). Oleatecoated magnetite was used as a magnetic carrier for enhancing the magnetic properties of fine beryl to be separated and get rid of the most common associated gangue mineral "quartz". This study proved that the most important factors affecting this separation process is the pH, as the study showed that the efficiency of the separation process is the maximum possible when pH at the isoelectric point (IEP) of beryl. Where at IEP, beryl is ready to adsorb oleate-coated maginetite onto its surface and the presence of sorbitan monooleate helps this adsorption and strengthens. To demonstrate the separation process, physico-chemical surface characterization for beryl, quartz, magnetite and oleate-coated magnetite was studied before and after treatment with sorbitan monooleate using zeta potential measurements and Fourier Transform Infrared (FTIR). Mineralogical characterization was take place for separated minerals of beryl, quartz and magnetite using x-ray diffraction (XRD) analyses and scanning electron microscope (SEM) with energy-dispersive spectrometer (EDS) unit. The magnetic carrier separation tests were performed in this study in the case of separate minerals investigated that fine beryl (94% recovery) could be recovered under optimum test conditions of 2.5 pH, 4.29 g/L sorbitan monooleate and 1:0.5 beryl to oleate-coated magnetite ratio, while quartz under the same conditions was recovered by 9.8%. FTIR measurements for the investigated minerals before and after treatment with sorbitan monooleate confirmed that the adsorption of sorbitan monooleate on the surface of beryl far exceeds that of the surface of quartz at beryl IEP.
Rocznik
Strony
14--23
Opis fizyczny
Bibliogr. 32 poz., rys. kolor.
Twórcy
  • Nuclear Materials Authority, Cairo, Egypt
Bibliografia
  • ANASTASSAKIS, G.N., 1999. A Study on the Separation of Magnesite Fines by Magnetic Carrier Methods, Colloids andbSurfaces A: Physicochemical Engineering Aspects, 149, 585–593.
  • ANASTASSAKIS, G., 2002. Separation of fine mineral particles by selective magnetic coating. J. Colloid and Interface Science. 256, 114-120.
  • BROOMBERG, J., GELINAS, S., FINCH, J. XU, Z., 1999. Review of magnetic carrier technologies for metal ion removal. Magnetic and Electric Separation. 9, 169-188.
  • CARLSON, J.J., KAWATRA, S.K., 2003. Factors affecting zeta potential of iron oxides. Mineral Processing & Extractive Metall. Rev., 34, 269–303.
  • CHENG, W., HOLTHAM, N., TAM, T., 2000. Froth Flotation of Monazite and Xenotime, Miner. Eng., 6, 341–351.
  • COATES, J., 2000. Interpretation of Infrared Spectra, a Practical Approach, Encyclopedia of Analytical Chemistry, John Wiley & sons Ltd, Chichester, 10815-10837
  • FAWZY, M.M., 2008. Mineralogical and chemical studies on some Egyptian beryl mineralization. M Sc. Thesis, Helwan Univ., Egypt. 2008.
  • FAWZY, M.M., GHARIB M.E., OMAR S.M., ATREES M.S., ABD ELHAI R. EBAID A. R. AND HASSAN M.A., 2007. Beryl concentration in the mine dumps of the ancient emerald mines of the Eastern Desert, Egypt, Sedimentological Society of Egypt, vol. 16.
  • FENG, D., ALDRICH, C., TAN, H., 2000. Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates. Hydrometallurgy, 56, 359–368.
  • GRAY, S.R., LANGBERG, D.E., GRAY, N.B., 1994. Fine mineral recovery with hydrophobic magnetite. Int. J. Miner. Process., 41, 183–200.
  • HARRELL, J.A., 2004. Archaeological geology of the world's first emerald mine. Geoscience Canada, 31 (2), 69-76.
  • HARRELL, J.A., 2006. Archaeological geology of Wadi Sikait Pal Arch's. J. of Archaeology of Egypt/Egyptology, 4(1), 1-12.
  • KARAPINAR, N., 2003. Magnetic separation of ferrihydrite from wastewater by magnetic seeding and high-gradient magnetic separation. Int. J. Miner. Process., 71, 45–54.
  • KOSMULSKI, M., 2009. Surface Charging and Points of Zero Charge, CRC Press, vol. 145, pp. 1092.
  • LU, J., YUAN, Z., WANG, N., LU, S., MENG, Q., LIU, J., 2017. Selective surface magnetization of pentlandite with magnetite and magnetic separation, Powder Technol., 317, 162–170.
  • NANDIYANTO, A., OKTIANI, R., RAGADHITA, R., 2019. How to read and iInterpret FTIR spectroscope of organic material. Indonesian J. of Science & Technology, 4(1), 79-118.
  • PARSONAGE, P., 1988. Principles of mineral separation by selective magnetic coating. Int. J. Mineral Processing, 24, 269-293.
  • PENGFEI H., LONG L., YAOLI P., HESHENG, Y., GUANGYUAN, X., 2020. Recovery of microcrystalline graphite from quartz using magnetic seeding. Minerals, 10, (24), 1-13.
  • POPE, I., SUTTON, I., 1973. The correlation between froth flotation response and collector adsorption from aqueous solution, Part I. titanium dioxide and ferric oxide conditioned in oleate solutions, Powder Technology, 7, 271–279.
  • PRAKASH, S., DAS, B., MOHANTY, J.K., VENUGOPAL, R., 1999. The recovery of fine iron minerals from quartz and corundum mixtures using selective magnetic coating. Int. J. Miner. Process., 57, 87–103.
  • PRAKASH, S., DAS, B., VENUGOPAL, R., 1999. Magnetic separation of calcite using selective magnetite coating, Magnetic and Electrical Separation, 10, 1-19.
  • QINGXIA, L., FRIEDLAENDER, F., 1994. Fine particles processing by magnetic carrier methods, Minerals Engineering. 7(4), 449-463.
  • RESHMA, B., SAKTHIVEL, R., MOHANTY, JK., 2016. Characterization of low grade natural emerald gemstone, J. Geology & Geophysics, 6(1), 1-6.
  • SHUBERT, R.H., Magnetic separation of particulate mixtures, U.S. Patent RE 30.360.1980.
  • SINGH, S., SAHOO, H., RATH, S.S., SAHU, A.K., DAS, B., 2015. Recovery of iron minerals from Indian iron ore slimes using colloidal magnetic coating. Powder Technol., 269, 38–45.
  • STOIA, M., ISTRATIE, R., PACURARIU, C., 2016. Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy. J. Therm. Anal. Calorim., 125, 1185–1198
  • TOREM, M.L., PERESI, A.E., ADAMIAN, R., 1992. On the mechanism of beryl flotation in the presence of some metallic cations. Minerals Engineering, 5, 1295-1304.
  • TUFAN, E., GULER, E., TUFAN, B., COCEN, E., 2015. Determination of separation parameters for calcite and apatite by magnetic coating. J. Ore Dressing., 17(34), 1-4.
  • UCBAS, Y., BOZKURT, V., BILIR, K., IPEK, H., 2014a. Separation of chromite from serpentine in fine sizes using magnetic carrier. Separation Science and Technology, 49, 946-956.
  • UCBAS, Y., BOZKURT, V., BILIR, K., IPEK, H., 2014b. Concentration of chromite by means of magnetic carrier using sodium oleate and other reagents. Physicochem. Probl. Miner. Process., 50(2), 767-782.
  • WANG, Y.-H., YU, F.-S., 2007. Effects of metallic ions on the flotation of spodumene and beryl. J. China University of Mining & Technology, 17(1), 35-39.
  • ZHANG, J., LIN, S., HAN, M., SU, Q., XIA, L., HUI, Z., 2020. Adsorption properties of magnetic magnetite nanoparticle for coexistent Cr(VI) and Cu(II) in mixed solution. Water, 12, 446, 1-13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e518bb1d-adc5-49c5-9c23-39bf664999d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.