PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mesospheric temperatures derived from three decades of hydroxyl airglow measurements from Longyearbyen, Svalbard (78°N)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The airglow hydroxyl temperature record from Longyearbyen, Svalbard, is updated with data from the last seven seasons (2005/20062011/2012). The temperatures are derived from ground-based spectral measurements of the hydroxyl airglow layer, which ranges from 76 to 90 km height. The overall daily average mesospheric temperature for the whole temperature record is 206 K. This is by 3 K less than what Dyrland and Sigernes (2007) reported in their last update on the temperature series. This temperature difference is due to cold winter seasons from 2008 to 2010. 2009/2010 was the coldest winter season ever recorded over Longyearbyen, with a seasonal average of 185 K. Temperature variability within the winter seasons is investigated, and the temperature difference between late December (local minimum) and late January (local maximum) is approximately 8 K.
Czasopismo
Rocznik
Strony
302--315
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • The University Centre in Svalbard, Longyearbyen, Norway
autor
  • Birkeland Centre for Space Science, Bergen, Norway
autor
  • University of Tromsø – The Arctic University of Norway, Tromsø Geophysical Observatory, Tromsø, Norway
Bibliografia
  • Azeem, S.M.I., G.G. Sivjee, Y.-I. Won, and C. Mutiso (2007), Solar cycle signature and secular long-term trend in OH airglow temperature observations at South Pole, Antarctica, J. Geophys. Res. 112, A1, A01305, DOI: 10.1029/2005JA011475.
  • Baker, D.J., and A.T. Stair Jr. (1988), Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr. 37, 4, 611, DOI: 10.1088/0031-8949/37/4/021.
  • Becker, E. (2012), Dynamical control of the middle atmosphere, Space Sci. Rev. 168, 1-4, 283-314, DOI: 10.1007/s11214-011-9841-5.
  • Beig, G., S. Fadnavis, H. Schmidt, and G.P. Brasseur (2012), Inter-comparison of 11-year solar cycle response in mesospheric ozone and temperature obtained by HALOE satellite data and HAMMONIA model, J. Geophys. Res. 117, D4, D00P10, DOI: 10.1029/2011JD015697.
  • Beldon, C.L., and N.J. Mitchell (2009), Gravity waves in the mesopause region observed by meteor radar. 2: Climatologies of gravity waves in the Antarctic and Arctic, J. Atmos. Solar-Terr. Phys. 71, 8-9, 875-884, DOI: 10.1016/j.jastp.2009.03.009.
  • Bevington, P.R., and D.K. Robinson (1992), Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, 328 pp.
  • Bittner, M., D. Offermann, H.-H. Graef, M. Donner, and K. Hamilton (2002), An 18-year time series of OH rotational temperatures and middle atmosphere decadal variations, J. Atmos. Solar-Terr. Phys. 64, 8-11, 1147-1166, DOI: 10.1016/S1364-6826(02)00065-2.
  • Cho, Y.-M., G.G. Shepherd, Y.-I. Won, S. Sargoytchev, S. Brown, and B. Solheim (2004), MLT cooling during stratospheric warming events, Geophys. Res. Lett. 31, 10, L10104, DOI: 10.1029/2004GL019552.
  • Collins, R.L., A. Nomura, and C.S. Gardner (1994), Gravity waves in the upper mesosphere over Antarctica: Lidar observations at the South Pole and Syowa, J. Geophys. Res. 99, D3, 5475-5485, DOI: 10.1029/93JD03276.
  • Cosby, P.C., and T.G. Slanger (2007), OH spectroscopy and chemistry investigated with astronomical sky spectra, Can. J. Phys. 85, 2, 77-99, DOI: 10.1139/p06-088.
  • Dyrland, M.E., and F. Sigernes (2007), An update on the hydroxyl airglow temperature record from the Auroral Station in Adventdalen, Svalbard (1980-2005), Can. J. Phys. 85, 2, 143-151, DOI: 10.1139/p07-040.
  • Dyrland, M.E., F.J. Mulligan, C.M. Hall, F. Sigernes, M. Tsutsumi, and C.S. Deehr (2010), Response of OH airglow temperatures to neutral air dynamics at 78°N, 16°E during the anomalous 2003-2004 winter, J. Geophys. Res. 115, D7, D07103, DOI: 10.1029/2009JD012726.
  • eKlima (2012), Norwegian Meteorological Institute’s climate database, http://eklima.met.no/, accessed November 2012.
  • French, W.J.R., and A.R. Klekociuk (2011), Long-term trends in Antarctic winter hydroxyl temperatures, J. Geophys. Res. 116, D4, D00P09, DOI: 10.1029/2011JD015731.
  • French, W.J.R, G.B. Burns, K. Finlayson, P.A. Greet, R.P. Lowe, and P.F.B. Williams (2000), Hydroxyl (6-2) airglow emission intensity ratios for rotational temperature determination, Ann. Geophys. 18, 10, 1293-1303, DOI: 10.1007/s00585-000-1293-2.
  • Goldman, A., W.G. Schoenfeld, D. Goorvitch, C. Chackerian Jr., H. Dothe, F. Mélen, M.C. Abrams, and J.E.A. Selby (1998), Updated line parameters for OH X²II-X²II (v″,v′) transitions, J. Quant. Spectrosc. Radiat. Transfer 59, 3-5, 453-469, DOI: 10.1016/S0022-4073(97)00112-X.
  • Hall, C.M., M.E. Dyrland, M. Tsutsumi, and F.J. Mulligan (2012), Temperature trends at 90 km over Svalbard, Norway (78°N 16°E), seen in one decade of meteor radar observations, J. Geophys. Res. 117, D8, D08104, DOI: 10.1029/2011JD017028.
  • Herzberg, G. (1950), Molecular Spectra and Molecular Structure. Vol. I. Spectra of Diatomic Molecules, Van Nostrand Company Inc., New York.
  • Hoffmann, P., W. Singer, D. Keuer, W.K. Hocking, M. Kunze, and Y. Murayama (2007), Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events, J. Atmos. Solar-Terr. Phys. 69, 17-18, 2355-2366, DOI: 10.1016/j.jastp.2007.06.010.
  • Krassovsky, V.I., N.N. Shefov, and V.I. Yarin (1962), Atlas of the airglow spectrum 3000-12 400 Å, Planet. Space Sci. 9, 12, 883-915, DOI: 10.1016/0032-0633(62)90008-9.
  • Kuttippurath, J., and G. Nikulin (2012), A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004-2009/2010, Atmos. Chem. Phys. 12, 17, 8115-8129, DOI: 10.5194/acp-12-8115-2012.
  • Labitzke, K., and B. Naujokat (2000), The lower Arctic stratosphere in winter Labitzke, K., and B. Naujokat (2000), The lower Arctic stratosphere in winter since 1952, SPARC Newsletter 15, 11-14.
  • Liu, H.-L, and R.G. Roble (2002), A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3, J. Geophys. Res. 107, D23, 4695, DOI: 10.1029/2001JD001533.
  • Matsuno, T. (1971), A dynamical model of the stratospheric sudden warming, J. Atmos. Sci. 28, 8, 1479-1494, DOI: 10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.
  • Matthes, K., U. Langematz, L.L. Gray, K. Kodera, and K. Labitzke (2004), Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM), J. Geophys. Res. 109, D6, D06101, DOI: 10.1029/2003JD004012.
  • Mies, F.H. (1974), Calculated vibrational transition probabilities of OH(X2Π), J. Mol. Spectrosc. 53, 2, 150-188, DOI: 10.1016/0022-2852(74)90125-8.
  • Mulligan, F.J., M.E. Dyrland, F. Sigernes, and C.S. Deehr (2009), Inferring hydroxyl layer peak heights from ground-based measurements of OH(6-2) band integrated emission rate at Longyearbyen (78°N, 16°E), Ann. Geophys. 27, 11, 4197-4205, DOI: 10.5194/angeo-27-4197-2009.
  • Myrabø, H.K. (1984), Temperature variation at mesopause levels during winter solstice at 78°N, Planet. Space Sci. 32, 2, 249-255, DOI: 10.1016/0032-0633(84)90159-4.
  • Myrabø, H.K. (1986), Winter-season mesopause and lower thermosphere temperatures in the northern polar region, Planet. Space Sci. 34, 11, 1023-1029, DOI: 10.1016/0032-0633(86) 90012-7.
  • NASA (2012), Annual Meteorological Statistics, National Aeronautics Space Administration, http://acdb-ext.gsfc.nasa.gov/Data_services/met/ann_data.html, accessed October 2012.
  • Nielsen, K.P., F. Sigernes, E. Raustein, and C.S. Deehr (2002), The 20-year change of the Svalbard OH-temperatures, Phys. Chem. Earth 27, 6-8, 555-561, DOI: 10.1016/S1474-7065(02)00037-2.
  • Offermann, D., P. Hoffmann, P. Knieling, R. Koppmann, J. Oberheide, and W. Steinbrecht (2010), Long-term trends and solar cycle variations of mesospheric temperature and dynamics, J. Geophys. Res. 115, D18, D18127, DOI: 10.1029/2009JD013363.
  • Pendleton Jr., W.R., and M.J. Taylor (2002), The impact of L-uncoupling on Einstein coefficients for the OH Meinel (6,2) band: implications for Q-branch rotational temperatures, J. Atmos. Solar-Terr. Phys. 64, 8-11, 971-983, DOI: 10.1016/S1364-6826(02)00051-2.
  • Perminov, V.I., A.I. Semenov, and N.N. Shefov (2007), On rotational temperature of the hydroxyl emission, Geomag. Aeron. 47, 6, 756-763, DOI: 10.1134/S0016793207060084.
  • Sigernes, F., N. Shumilov, C.S. Deehr, K.P. Nielsen, T. Svenøe, and O. Havnes (2003), Hydroxyl rotational temperature record from the auroral station in Adventdalen, Svalbard (78°N, 15°E), J. Geophys. Res. 108, A9, 1342, DOI: 10.1029/2001JA009023.
  • Sivjee, G.G., R.L. Walterscheid, J.H. Hecht, R.M. Hamwey, G. Schubert, and A.B. Christensen (1987), Effects of atmospheric disturbances on polar mesopause airglow OH emissions, J. Geophys. Res. 92, A7, 7651-7656, DOI: 10.1029/JA092iA07p07651.
  • Town, M.S., V.P. Walden, and S.G. Warren (2007), Cloud cover over the South Pole from visual observations, satellite retrievals, and surface-based infrared radiation measurements, J. Climate 20, 3, 544-559, DOI: 10.1175/JCLI4005.1.
  • Turnbull, D.N., and R.P. Lowe (1989), New hydroxyl transition probabilities and their importance in airglow studies, Planet. Space Sci. 37, 6, 723-738, DOI: 10.1016/0032-0633(89)90042-1.
  • Van der Loo, M.P., and G.C. Groenenboom (2007), Theoretical transition probabilities for the OH Meinel system, J. Chem. Phys. 126, 11, 114314-1-114314-7, DOI: 10.1063/1.2646859.
  • Viereck, R.A., and C.S. Deehr (1989), On the interaction between gravity waves and the OH Meinel (6-2) and the O₂ atmospheric (0-1) bands in the polar night airglow, J. Geophys. Res. 94, A5, 5397-5404, DOI: 10.1029/JA094iA05p05397.
  • Walterscheid, R.L., G.G. Sivjee, G. Schubert, and R.M. Hamwey (1986), Largeamplitude semidiurnal temperature variations in the polar mesopause: evidence of a pseudotide, Nature 324, 7445, 347-349, DOI: 10.1038/324347a0.
  • Walterscheid, R.L., G. Schubert, and M.P. Hickey (1994), Comparison of theories for gravity wave induced fluctuations in airglow emissions, J. Geophys. Res. 99, A3, 3935-3944, DOI: 10.1029/93JA03312.
  • Walterscheid, R.L., G.G. Sivjee, and R.G. Roble (2000), Mesospheric and lower thermospheric manifestations of a stratospheric warming event over Eureka, Canada (80°N), Geophys. Res. Lett. 27, 18, 2897-2900, DOI: 10.1029/2000GL003768.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e50e1537-6f30-4343-aad5-98621ce7ae46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.