Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bisphenol A (BPA) is an industrial chemical used as an additive in conventional point-of-sale thermal paper receipts, in the production of many polycarbonate plastics, and epoxy resins lignin for food. BPA is xenoestrogen, a foreign compound that is not naturally produced in living organisms, but which acts similarly to natural 17-ß estradiol (natural estrogen). Due to its weak estrogenic activities, BPA exposure may influence multiple endocrine-related pathway, and is associated with prostate and breast cancer, neurobehavioral deficits, heart disease, and obesity. Furthermore, BPA may act as a DNA methylation agent and cause altered gene expression in the brain. Human exposure to bisphenol A is a matter of controversy. This review shows a potential risks in workplace resulting from contact with bisphenol A. The work presents the contribution of BPA exposure levels via dermal contact and the relationship between BPA exposure level and oxidative DNA damage.
Czasopismo
Rocznik
Tom
Strony
45--49
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- University of Technology, Clausthal Centre of Material Technology, Agricolastraße 2, 38678 Clausthal-Zellerfeld, Germany
autor
- University of Technology, Clausthal Centre of Material Technology, Agricolastraße 2, 38678 Clausthal-Zellerfeld, Germany
autor
- Czestochowa University of Technology, Department of Production Engineering and Safety, Al. Armii Krajowej 19B, 42-200 Czestochowa, Poland
autor
- Karkonosze College in Jelenia Góra, Faculty of Natural Sciences and Technology, Dietetics, ul. Lwówecka 18, 58-503 Jelenia Góra, Poland
Bibliografia
- 1.Auvergne, R., et al., 2013. Biobased thermosetting epoxy: present and future. Chemical Reviews, 114(2), 1082-1115.
- 2.Baldwin, W.S., et. al., 1998. BG-1 ovarian cell line: an alternative model for examining estrogen-dependent growth in vitro, In Vitro Cellular and Developmental Biology-Animal, 34(8), 649-654.
- 3.Björnsdotter, M.K., Boer, J. de, and Ballesteros-Gómez, A. (2017). Bisphenol A and replacements in thermal paper, A review. Chemosphere, 182, 691- 706. https://doi.org/10.1016/j.chemosphere.2017.05.070
- 4.Bsoul-Kopowska, M. 2019. Strategic Goals of the European Union in Managing Health Safety, w: System Safety: Human - Technical Facility - Environment 1(1), 180-188. DOI: 10.2478/czoto-2019-0023.
- 5.Chen, D., et al., 2016. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity-A Review, Environmental science and technology, 50(11), 5438-53, DOI:10.1021/acs.est.5b05387.
- 6.Do Minh, T., et al., 2017. Urinary bisphenol A and obesity in adults: results from the Canadian Health Measures Survey, Health promotion and chronic disease prevention in Canada: research, policy and practice, 37(12), 403. DOI: 10.24095/hpcdp.37.12.02.
- 7.Duan, Y., et al., 2018. Association of urinary concentrations of bisphenols with type 2 diabetes mellitus: A case-control study, Environmental Pollution, 243, 1719-1726.
- 8.European Food Safety Authority, 2015. Scientific opinion on the risks to public health related to the presences of bisphenol A (BPA) in foodstuffs, Excutive summary, EFSA J, 13(1), 3978.
- 9.Ferris, J., Mahboubi, K., MacLusky, N., King, W. A., and Favetta, L. A., 2016. Bpa exposure during in vitro oocyte maturation results in dosedependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression, Reproductive Toxicology (Elmsford, N.Y.), 59, 128-138. https://doi.org/10.1016/j.reprotox.2015.12.002
- 10.Gao, H., et al., 2015. Bisphenol A and hormone-associated cancers: current progress and perspectives, Medicine, 94(1). DOI: 10.1097/MD.0000000000000211.
- 11.Guzel, G., Deveci, H., Properties of polymer composites based on bisphenol A epoxy resinsw with orginal/modified steel slag, Polym.Compos., 39, 513-521. DOI:10.1002/pc.23962.
- 12.Hafezi, S.A., and Abdel-Rahman, W.M., 2019. The Endocrine Disruptor Bisphenol A (BPA) Exerts a Wide Range of Effects in Carcinogenesis and Response to Therapy, Current Molecular Pharmacology, 12(3), 230–238. https://doi.org/10.2174/1874467212666190306164507
- 13.Hu, W., Dong, T., Wang, L., Guan, Q., Song, L., Chen, D., Wang, X., 2017. Obesity aggravates toxic effect of BPA on spermatogenesis, Environment International, 105, 56-65. https://doi.org/10.1016/j.envint.2017.04.014
- 14.Jalal, N., et al., 2017. Bisphenol A (BPA) the mighty and the mutagenic, Toxicology reports.
- 15.Lama, S., Vanacore, D., Diano, N., Nicolucci, C., Errico, S., Dallio, M., Stiuso, P. (2019). Ameliorative effect of Silybin on bisphenol A induced oxidative stress, cell proliferation and steroid hormones oxidation in HepG2 cell cultures, Scientific Reports, 9(1), 3228. https://doi.org/10.1038/s41598-019-40105-8
- 16.Lee, et al., 2018. Bisphenol A exposure through receipt handling and its association with insulin resistance among female cashiers, Environment international, 117, 268-275.
- 17.Liu, J., Martin, J.W., 2019. Comparison of Bisphenol A and Bisphenol S Percutaneous Absorption and Biotransformation, Environmental Health Perspectives, 127(6), 67008. https://doi.org/10.1289/EHP5044
- 18.Nakamura, D., et al., 2010. Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol, Toxicology letters, 194(1-2), 16-25.
- 19.Nomiri, S., Hoshyar, R., Ambrosino, C., Tyler, C. R., Mansouri, B., 2019. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways, Environmental Science and Pollution Research International, 26(9), 8459-8467. https://doi.org/10.1007/s11356-019-04228-9
- 20.Pjanic, M., 2017. The role of polycarbonate monomer bisphenol-A in insulin resistance, PeerJ, 5, e3809. DOI: 10.7717/peerj.3809.
- 21.Rochester, J. R., 2013. Bisphenol A and human health: a review of the literature, Reproductive toxicology, 42, 132-155.
- 22.Rochester, J.R., Bolden, A.L., 2015. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes, Environmental Health Perspectives, 123(7), 643-650. https://doi.org/10.1289/ehp.1408989
- 23.Schatten, H., Ripple, M. O., 2018. The Impact of Centrosome Pathologies on Prostate Cancer Development and Progression, Advances in Experimental Medicine and Biology, 1095, 67-81. https://doi.org/10.1007/978- 3-319-95693-0_4
- 24.Shafei, A., Ramzy, M.M., Hegazy, A.I., Husseny, A.K., El-Hadary, U.G., Taha, M.M., Mosa, A.A., 2018. The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer, Gene, 647, 235-243. https://doi.org/10.1016/j.gene.2018.01.016
- 25.Tang, S., et al., 2016. Gas-phase flame-retardant effects of a bi-group compound based on phosphaphenanthrene and triazine-trione groups in epoxy resin, Polymer Degradation and Stability, 133, 350-357.
- 26.Tarapore, P., et al., 2014. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorageindependent growth in vitro, PloS one, 9(3), e90332. DOI: 10.1371/journal.pone.0090332.
- 27.Tse, L. A., Wang, F., Yi Lee, P.M., Ho, W.M., and Ng, C.F., 2018. 1656c Nightshift work and prostate cancer among hong kong chinese men, Occupational and Environmental Medicine, 75, A483.4-A484. https://doi.org/10.1136/oemed-2018-ICOHabstracts.1377
- 28.Wang, X., et al., 2010. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer, Polymer, 51(11), 2435-2445.
- 29.Zhu, X., Gao, L., Yan, C., and He, Y., 2018. A novel role and mechanism of cystic fibrosis transmembrane conductance regulator in bisphenol A-induced prostate cancer, Journal of Cellular Biochemistry, Advance online publication, https://doi.org/10.1002/jcb.28156
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e50d48f2-fa44-4cd2-8d5f-30ec51c6db12