PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of pollution by potentially toxic elements of agri-food biomass combustion ashes under different temperature regimes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the influence of temperature on the quality of ash produced from the combustion of biomass from the agri-food industry, as well as its content of potentially toxic elements (PTE) such e as Pb, Cd, As, Cr, Cu, Ni, Se, and Zn. Geochemical indicators, including E (Emission factor of metals into the atmosphere), Cf (Contamination factor for individual toxicity metals), PLI (Pollution load index), and DC (Degree contamination), were calculated in relation to the potentially adverse environmental impact of biomass fuels.
Rocznik
Strony
64--74
Opis fizyczny
Bibliogr. 58 poz., tab., wykr.
Twórcy
  • University of Silesia, Katowice, Poland
  • University of Silesia, Katowice, Poland
Bibliografia
  • 1. Böhler, L., Görtler G., Krail J. & Kozek, M. (2019). Carbon monoxide emission model for small-scale biomass combustion wooden pellets. Applied Energy 124, 113668. DOI:10.1016/j.apenergy.2019.113668.
  • 2. Cappelletti, M., Funari, V., Gasparotto, G. & Dinelli, E. (2021). Selenium in the environment. [In:] Environmental Technologies to Treat Selenium Pollution (1-60). DOI:10.2166/9781789061055_0003.
  • 3. Chiyanzu, I. (2014). Liquefaction of sunflower husks for biochar production. Mini-dissertation submitted in partial fulfilment of the requirements for the degree of Masters of Science in Engineering Science in Chemical Engineering in the School of Chemical and Minerals Engineering of the North-West University (Potchefstroom Campus)
  • 4. Cruz N. , Rodrigues M.S.,Carvalho L., Duarte A., Pereira., Römkens, P.F.A.M. & Tarelho . A. (2017). Ashes from fluidized bed combustion of residual forest biomass: recycling to soil as a viable management option. Environmental Science and Pollution Research 24, pp. 14770-14781. DOI: 10.1007/s11356-017-9013-6
  • 5. Dołżyńska, M., Obidziński, S., Kowczyk-Sadowy, M. & Krasowska, M. (2019). Densification and combustion of cherry stones. Energies12, 3042. DOI:10.3390/en12163042
  • 6. European Environment Agency (2019). EMEP/EEA air pollutant emission inventory guidebook 2019. Luxembourg. Publications Office of the European Union, 2019.
  • 7. Gani, E.A., Mahidin, M.R., Sudhakar, K., Rosdi, S.M. & Husni, H. (2022). Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review. Archives of Environmental Protection, 48, 3, pp. 57-39. DOI:10.24425/aep.2022.142690.
  • 8. Gazalli, H., Malik, A.H., Jalal, H., Afshan, S. & Mir, A. (2013). Proximate Composition of Carrot Powder and Apple Pomace Powder. Agricultural and Food Sciences, 3, 1, pp. 25-28. ISSN: 2165-896X
  • 9. Gope, M., Masto, R.E., Georg, J., Hoque, R.R. & Balachandran, S. (2017). Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 138, pp. 231-241. DOI:10.1016/j.ecoenv.2017.01.008.
  • 10. GUS - Główny Urząd Statystyczny (2023). Report: Final estimate of the main agricultural and horticultural crops in 2023. Warszawa (in Polish).
  • 11. GUS - Główny Urząd Statystyczny (2019). Energy consumption in households in 2018. Energy consumption in households in 2018. Warszawa. (in Polish)
  • 12. Gworek, B., Jeske, K. & Kwapisz, J. (2003). Evaluation of the effectiveness of phytoremediation of soils contaminated with heavy metals using the sequential extraction method. Archives of Environmental Protection, 29, 4, pp. 71-79.
  • 13. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14, pp. 975-1001. DOI:10.1016/0043-1354(80)90143-8.
  • 14. Hayford, I.S., Ofori, E.K., Gyamfi, B.A. & Gyimach, J. (2023). Clean cooking technologies, information, and communication technology and the environment. Environmental Science and Pollution Research 30, pp. 105646-105662. DOI:10.1007/s11356-023-29577-4.
  • 15. Isemin, R.L., Tabet, F., Nebyvaev, A., Kokh-Tatarenko, V., Kuzmin, S., Milovanov, O., Klimov, D., Mikhalev, A., Dobkin, S. & Zhulaev, Y. (2022). Prediction of the behaviour of sunflower husk ash after its processing by various torrefaction methods. Energies 15, 7483. DOI:10.3390/en15207483.
  • 16. Islamova, S., Karaeva, J., Timofeeva, S. & Kadyirov, A. (2021). An experimental study of sunflower husk pellets combustion. BIO Web of Conferences 37,5. Article number 00070. DOI:10.1051/bioconf/20213700070.
  • 17. Jelonek, Z., Drobniak, A., Mastalerz, M. & Jelonek, I. (2021). Emissions during grilling with wood pellets and chips. Atmospheric Environment: X 12. DOI:10.1016/j.aeaoa.2021.100140.
  • 18. Kałużyński, M., Jabłoński, S., Kaczmarczyk, J., Świątek, Ł., Pstrowska, K. & Łukaszewicz, M. (2018). Technological aspects of sunflower biomass and brown coal co-firing. Journal of the Energy Institute, 91, 5, pp. 668 - 675. DOI:10.1016/j.joei.2017.06.003.
  • 19. Kazimierski, P., Januszewicz, K., Godlewski, W., Fijuk, A., Suchocki, T., Chaja, P., Barczak, B. & Kardaś, D. (2022). The course and the effects of agricultural biomass pyrolysis in the production of high-calorific biochar. Minerals 15, 1038. DOI:10.3390/ma15031038.
  • 20. Kebonye, N.M., Eze, P.N. & Akinyemi, F.O. (2017). Long term treated wastewater impact sand source identification of heavy metals in semi-arid soils of Central Botswana. Geoderm. Reg. 10, pp. 200-214. DOI:10.1016/j.geodrs.2017.08.001.
  • 21. Klyta, J., Janoszka, K., Czaplicka, M., Rachwał, T. & Jaworek, K. (2023). Co-combustion of wood pellet and waste in residential heating boilers - comparison of carbonaceous compound emission. Archives of Environmental Protection, 49, 3, pp. 100-106. DOI:10.24425/aep.2023.147332.
  • 22. National Energy and Climate Plan 2021-2030. https://www.gov.pl/web/aktywa-panstwowe/krajowy-plan-na-rzecz-energii-iklimatu-na-lata-2021-2030 (online access 23.05.2024 r.)
  • 23. KOBIZE - The National Centre for Emissions Management) 2023. Emission factors of pollutants from fuel combustion for sources with a nominal thermal power of up to 5 MW, used for automatic calculation of emissions in reports to the National Database for 2022 and 2023, National Fund for Environmental Protection and Water Management, Warsaw (in Polish)
  • 24. Krumal, K., Mikuska, P., Horak, J., Hopan, F. & Krpec, K. (2019). Comparison of emissions of gaseous and particulate polutants from the combustion of biomass and coal in modern and old-type boilers used for residental heating in the Czech Republic, Central Europe. Chemosphere 229, pp. 51-59. DOI:10.1016/j.chemosphere.2019.04.137.
  • 25. Lanzerstorfer, Ch. (2015). Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants. Journal of Environmental Sciences 30, pp. 191-197. DOI: 10.1016/j.jes.2014.08.021
  • 26. Leong, Y.K., Chang, J. (2022). Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. Bioresource Technology 359, 127459. DOI:10.1016/j.biortech.2022.127459
  • 27. Masiarz, E., Kowalska, H. & Bednarska, M. (2019). The use of plant pomace as a source of dietary fibre and other bio-ingredients in creating health-promoting, sensory and technological properties of bread.Postępy Techniki Przetwórstwa Spożywczego 1: pp. 103-107 (in Polish)
  • 28. Maxwell, D., Gudka, B.A., Jones, J.M. & Williams, A. (2020). Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove. Fuel Processing Technology, 199, 106266. DOI:10.1016/j.fuproc.2019.106266.
  • 29. Mehmood, K., Saifullah Y.B., Bibi, S., Dahlawi, S., Yassen, M., Abrar, M.M., Srivatstava, P., Fahad, S. & Faraj, T.K.H. (2022). Contributions of open biomass burning and crop straw burning to air quality: Current research paradigm and future outlooks. Frontiers and Environmental Science 10, pp. 1-15. DOI:10.3389/fenvs.2022.852492.
  • 30. Miladinović, M.R., Zdujić, M.V., Veljović, D.N, Kristić, J.B., Banković-Ilić, I.B., Veljković,V.B. & Stamenković, O.S. (2020). Valorization of walnut shell ash as a catalyst for biodiesel production. Renewable Energy, 147, 1, pp. 1033-1043. DOI:/10.1016/j.renene.2019.09.056.
  • 31. Ministry of Energy, (2019). Executive Sumarry of Poland’s National Energy and Climate Plan for the years 2021-2030 (NECP PL), Poland (online access 23.05.2023).
  • 32. Molo, B. (2016). European Union policy and the development of renewable energy sources in Germany.Rocznik Integracji Europejskiej Nr 10, pp. 121-142. (in Polish)
  • 33. Obernberger, I., Biederma, F., Widmann, W. & Riedl, R. (1997). Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 12, pp. 211-224. DOI:10.1016/S0961-9534(96)00051-7.
  • 34. Odzijewicz, J.I., Wołejko, E., Wydro, U., Wasil, U. & Jabłońska-Trypuć, A. (2022). Utilization of ashes from biomass combustion. Energies 15, 9653. DOI:10.3390/en15249653.
  • 35. Pastircakova, K. (2004). Determination of trace metal concentrations in ashes from various biomass materials. Energy Education Science and Technology 13(2), pp. 97-104.
  • 36. Persson, K., Broström, M., Carlsson, J., Nordin, A. & Backman, R. (2007). High temperature corrosion in a 65 MW waste to energy plant. Fuel Processing Technology, 88, pp. 1178-1182.
  • 37. Piechota, G., Unpaprom, Y., Dong, Ch. & Kumar, G. (2023). Recent advances in biowaste management towards sustainable environment. Bioresource Technology 68, 128326. DOI:10.1016/j.biortech.2022.128326.
  • 38. PN-EN ISO 16948:2015-07 (2015). Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen. ICS 75.160.40.
  • 39. PN-EN ISO 16994:2016-10 (201)6. Biopaliwa stałe - Oznaczanie całkowitej zawartości siarki i chloru. Solid biofuels - Determination of total content of sulfur and chlorine. ICS 75.160.40. (in Polish)
  • 40. PN-EN ISO 18134-2:2017-03 (2017). Solid biofuels - Determination of moisture content - Drying method - Part 2: Total moisture - Simplified method. ICS 75.160.40. (in Polish)
  • 41. PN-EN ISO 18125:2017-07 (2017). Solid biofuels - Determination of calorific value. ICS 75.160.40. (in Polish)
  • 42. PN-EN ISO 18122:2023-05 (2023). Solid biofuels - Determination of ash content. ICS 27.190, 75.160.40. (in Polish)
  • 43. Postrzednik, S. (2014). Calorific value as a parameter of biomass energy usefulness. Energetyka 10, pp. 573-579. (in Polish)
  • 44. Queirós, C.S.G.P., Cardoso, S., Lourenço, A., Ferreira, J., Miranda, I., Lourenço, M.J.V. & Pereira, H. (2020). Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conversion and Biorefinery, 10, pp. 175-188. DOI:10.1007/s13399-019-00424-2
  • 45. Raczkowska, E., Wojdyło, A. & Nowicka, P. (2024). Effect of the Addition of Apple Pomace and Erythritol on the Antioxidant Capacity and Antidiabetic Properties of Shortbread Cookies. Polish Journal of Food and Nutrition Sciences, 74, 2, pp. 147-161. DOI:10.31883/pjfns/187941
  • 46. Romero, E., Quirantes, M. & Nogales, R. (2017). Characterization of biomass ashes produced at different temperatures from olive-oil industry and greenhouse vegetable wastes. Fuel, 208, pp. 1-9. DOI:10.1016/j.fuel.2017.06.133.
  • 47. Rzeźnik, W., Mielcarek, P. & Rzeźnik, I. (2016). Assessment of energetic potential of cherry stones in Poland. Journal of Research and Applications in Agricultural Engineering, 61, 1, pp. 84-87
  • 48. Techera, R.J., Méndez, M., Iturmendi, F. & Piqueras, C.M. (2024). A Clever Application of a Recycled Waste Solution for Levulinic Acid and Adsorbent Production from Apple Pomace Using a Hydrothermal Process. Waste and Biomass Valorization, 15, 7, pp.1-15. DOI: 10.1007/s12649-024-02459-7
  • 49. Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffrey, D.W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters, 33, pp. 566-575. DOI:10.1007/BF02414780.
  • 50. Turekian, K.K. & Wedepohl, K.H. (1961). Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin 72, pp. 175-192. DOI:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
  • 51. Uliasz-Bocheńczyk, A., Pawluk, A. & Pyzalski, M. (2016). Characteristics of ash from biomass combustion in fluidized bed boilers. Gospodarka Surowcami Mineralnymi - Mineral Resources Management t. 32, z. 3, 149-162. doi 10.1515/gospo-2016-0029 (in Polish)
  • 52. Uliasz-Bocheńczyk, U., Deja, J. & Mokrzycki, E. (2021). The use of alternative fuels in the cement industry as part of circular economy. Archives of Environmental Protection, 47, 4, pp. 109-117. DOI 10.24425/aep.2021.139507.
  • 53. Vamvuka, D., Loukeris, D., Stamou, E., Vlasiadis, A., Sfakiotakis, S. & Bandelis, G. (2020). Development and performance of a multi-fuel residential boiler burning agricultural residues. Front. Energy Res. 8, 136. DOI:10.3389/fenrg.2020.00136.
  • 54. Vassilev, S.V., Baxter, D., Andersen, L.K. & Vassileva, C.G. (2013). An overview of the composition and application of biomass ash. Part 1. Phase - Mineral and chemical composition and classification. Fuel, 105, pp. 40-76. DOI:10.1016/j.fuel.2012.09.041.
  • 55. Zając, G., Szyszlak-Bargłowicz, J., Gołębiowski, W. & Szczepanik, M. (2018). Chemical characteristics of biomass ashes. Energies, 11, 2885. DOI:10.3390/en11112885.
  • 56. Zając, G., Szyszlak-Bargłowicz, J. & Szczepanik, M. (2019). Influence of biomass incineration temperature on the content of selected heavy metals in the ash used for fertilizing purposes. Appl. Sci., 9, 1790. DOI:10.3390/app9091790.
  • 57. Zajemska, M. & Musiał, D. (2013). Energy use of biomass from agricultural production in the co-combustion process. Probl. Inżynierii Rol.- Problems of Agricultural Engineering, 4, 82, pp. 107-118. (in Polish)
  • 58. Zajemska, M., Urbańczyk, P., Poskart, A., Urbaniak, D., Radomiak, H., Musiał, D., Golański, G. & Wyleciał, T. (2017). The impact of co-firing sunflower husk pellets with coal in a boiler on the chemical composition of flue gas. E3S Web of Conferences 14: 02021. DOI:10.1051/ 71402021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e50c9189-36e6-424c-a48c-d4e43d21f0e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.