PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of the hydrodynamics of concurrent gas and liquid flow through packed bed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present study is to simulate concurrent gas and liquid flow through packed bed in the gas continuous flow regime (GCF) and continuity shock waves regime(CSW) using computational fluid dynamics (CFD). The application of multiple gas-liquid-solid model requires the knowledge of relationships determining interactions between phases. The exchange coefficients of these forces were defined by means of equations suggested by ATTOU et al. (1999). As a result of the computational simulation the following data were obtained: gas pressure drop in the bed, volume fraction distribution of a given phase (liquid and gas holdups) along the packing and its mean value in the reactor. The comparison of the values of the hydrodynamic parameters, both calculated and obtained experimentally in a column packed with 3 mm glass spheres, indicates that CFD model can be applied to model the hydrodynamics of concurrent gas and liquid flows through a packed bed because a good compatibility of the compared parameters was obtained.
Słowa kluczowe
Rocznik
Tom
Strony
267--284
Opis fizyczny
Bibliogr. 49 poz., wykr.
Twórcy
autor
  • Department of Process Engineering, University of Opole
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences
autor
  • Institute of Chemical Engineering, Polish Academy of Sciences
Bibliografia
  • AL-DAHHAN M.H., DUDUKOVIC M.P. 1994. Pressure drop and liquid holdup in high pressure trickle-bed reactors. Chemical Engineering Science, 49: 5681-5698.
  • AL-DAHHAN M.H., KHADILKAR M.R., WU Y., DUDUKOVIĆ M.P. 1998. Prediction of pressure drop and liquid holdup in high-pressure trickle-bedreactors. Industrial & Engineering Chemistry Research, 37: 793-798.
  • AL-DAHHAN M.H., LARACHI F., DUDUKOVIĆ M.P., LAURENT A. 1997. High pressure trickle-bed reactors: a review. Industrial & Engineering Chemistry Research, 36: 3292-3314.
  • ATTOU A., BOYER C., FERSCHNEIDER G. 1999. Modeling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chemical Engineering Science, 54: 785-802.
  • ATTOU A., FERSCHNEIDER G. 2000. A two-fluid hydrodynamic model for the transition between trickle and pulse flow in cocurrent gas-liquid packed-bed reactor. Chemical Engineering Science, 55: 491-511.
  • BARTELMUS G., JANECKI D. 2003. Hydrodynamics of a concurrent down-flow of gas and foaming liquid through the packed bed. Part II. Liquid holdup and gas pressure drop. Chemical Engineering Processing, 42: 993-1005.
  • BENENATI R.F., BROSILOW C.B. 1962. Void fraction distribution in beds of spheres. AIChE Journal, 8: 359-361.
  • BEY O., EINGENBERGER G. 1997. Fluid flow through catalyst filled tubes. Chemical Engineering Science, 52: 1365-1375.
  • CLEMENTS L.D., SCHMIDT P.C. 1980. Two-phase pressure drop in cocurrent downflow in packed beds: air-silicone oil systems. AIChE Journal, 26: 314-317.
  • COHEN Y., METZNER A.B. 1981. Wall effects in laminar-flow of fluids through packed-beds. AIChE Journal, 27: 705-715.
  • DE KLERK A. 2003. Voidage variation in packed beds at small column to particle diameter ratio, AIChE Journal, 49: 2022-2029.
  • ELLMAN M.J., MIDOUX N., WILD G., LAURENT A., CHARPENTIER J.C. 1990. A new, improved liquid hold-up correlation for trickle-bed reactors. Chemical Engineering Science, 45: 1677-1684.
  • GANCARCZYK A., JANECKI D., BARTELMUS G., BURGHARDT A. 2014. Analysis of hydrodynamics of periodically operated trickle bed reactor. Chemical Engineering Research and Design, 92: 2609-2617.
  • GOODLING J.S., VACHON R.I., STELPFUG W.S., YING S.J., KHADER M.S. 1983. Radial porosity distribution in cylindrical beds packed with spheres. Powder Technology, 35: 23-29.
  • GROSSER K., CARBONELL R.G., SUNDARESAN S. 1988. Onset of pulsing in two-phase cocurrent downflow through a packed bed. AIChE Journal, 34: 1850-1860.
  • GUNJAL P.R., KASHID M.N., RANADE V.V., CHAUDHARI R.V. 2005. Hydrodynamics of trickle-bed reactors: Experiments and CFD modelling. Industrial & Engineering Chemistry Research, 44: 6278-6294.
  • HOLUB R.A., DUDUKOVIĆ M.P., RAMACHANDRAN P.A. 1993. Pressure drop, liquid holdup and flow regime transition in trickle flow. AIChE Journal, 39: 302-321.
  • HOLUB R.A., DUDUKOVIĆ P.A., RAMACHANDRAN P.A. 1992. A phenomenological model for pressure drop, liquid holdup and flow regime transition in gas-liquid trickle flow. Chemical Engineering Science, 47: 2343-2348.
  • HUNT M.L., TIEN C.L. 1990. Non-Darcian flow, heat and mass transfer in catalytic packed-bed reactors. Chemical Engineering Science, 45: 55-63.
  • ILIUTA I., LARACHI F. 1999. The generalized slit model: pressure gradient, liquid holdup & wetting efficiency in gas-liquid trickle flow. Chemical Engineering Science 54: 5039-5045.
  • ILIUTA I., LARACHI F., AL-DAHHAN M.H. 2000. Double slit model for partially wetted trickle flow hydrodynamics. AIChE Journal, 46: 597-609.
  • JANECKI D., BURGHARDT A., BARTELMUS G. 2014. Influence of the porosity profile and sets of Ergun constants on the main hydrodynamic parameters in the trickle-bed reactors, Chemical Engineering Journal, 237: 176-188.
  • JANECKI D., BURGHARDT A., BARTELMUS G. 2016. Parametric sensitivity of a CFD model concerning the hydrodynamics of trickle-bed reactor (TBR). Chemical and Process Engineering, 37(1): 97-107.
  • JIANG Y., KHADILKAR M.R., AL-DAHHAN M.H., DUDUKOVIC M.P. 2001. CFD modelling of multiphase flow distribution in catalytic packed bed reactors: scale down issues. Catalysis Today, 66: 209-218.
  • JIANG Y., KHADILKAR M.R., AL-DAHHAN M.H., DUDUKOVIC M.P. 2002. CFD of multiphase flow in packed-bed reactors: I. K-fluid modelling issues. AIChE Journal, 48: 701-715.
  • KEIR G., JEGATHEESAN V. 2014. A review of computational fluid dynamics applicationsin pressuredriven membrane filtration. Reviews in Environmental Science and Bio/Technology, 13: 183-201.
  • KHAN M.J.H., HUSSAIN M.A., MANSOURPOUR Z., MOSTOUFI N., GHASEN N.M., ABDULLAH E.C. 2014. CFD simulation of fluidized bed reactors for polyolefin production - a review. Journal of Industrial and Engineering Chemistry, 20: 3919-3946.
  • KUIPERS J.A.M., VAN SWAAIJ W.P.M. 1997. Application of computational fluid dynamics to chemical reaction engineering. Reviews in Chemical Engineering, 13/3: 1-118.
  • LARACHI F., LAURENT A., MIDOUX N., WILD G. 1991. Experimental study of a trickle-bed reactor operating at high pressure: two-phase pressure drop and liquid saturation. Chemical Engineering Science, 46: 1233-1246.
  • LI S., DING Y., WEN D., HE Y. 2006. Modelling of the behavior of gas-solid two-phase mixtures flowing through packed beds. Chemical Engineering Science, 61: 1922-1931.
  • MACDONALD L.F., EL-SAYED M.S., MOW K., DULLIEN F.A.L. 1979. Flow through porous media - the Ergun equation revisited. Industrial & Engineering Chemistry Fundamentals, 18: 199-208.
  • MARTIN H. 1978. Low Peclet number particle to fluid heat and mass transfer in packed beds. Chemical Engineering Science: 33, 913-919.
  • MIDOUX N., FAVIER M., CHARPENTIER J.C. 1976. Flow pattern, pressure loss and liquid holdup data in gas-liquid downflow packed beds with foaming and nonfoaming hydrocarbons. Journal Chemical Engineering Japan, 9: 350-356.
  • MUELLER G. 1992. Radial void fraction distribution in randomly packed fixed beds of uniformly sized spheres in cylindrical containers. Powder Technology, 72: 269-275.
  • RAO V.G., ANANTH M.S., VARMA Y.B.G. 1983. Hydrodyanimcs of two-phase cocurrent downflow in packed beds. AIChE Jornal, 29: 467-483.
  • RAO V.G., DRINKENBURG A.A.H. 1983. Pressure drop and hydrodynamic properties of pulses in two-phase gas-liquid downflow through packed columns. Canadian Journal of ChemicalEngineering, 61: 158-167.
  • SAEZ A.E., CARBONELL R.G. 1985. Hydrodynamic parameters for gas-liquid cocurrent flow in packed beds. AIChE Journal, 31: 52-61.
  • SAI P.S.T., VARMA Y.B.G. 1987. Pressure drop in gas-liquid downflow through packed beds. AIChE Jornal, 33: 2027-2036.
  • SAJJADI B., RAMAN A.A.A., IBRAHIM S., SHAH R.S.S.R.E. 2012. Review on gas-liquid mixing analysis in multiscale stirred vessel using CFD. Reviews in Chemical Engineering, 28: 171-189.
  • SHAIKH A., AL-DAHHANM. 2013. Scale-up of bubble column reactors: A review of current state-of-the-art. Industrial & Engineering Chemistry Research, 52: 8091-8108.
  • SOUADNIA A., SOLTANA F., LESAGE F., LATIFI M.A. 2005. Some computational aspects in the simulation of hydrodynamics in a trickle-bed reactor. Chemical Engineering and Processing, 44: 847-854.
  • SPECCHIA V., BALDI G. 1977. Pressure drop and liquid hold-up for two phase cocurrent flow in packed beds. Chemical Engineering Science, 32: 515-523.
  • SUN C.G., YIN F.H., AFACAN A., NANDAKUMAR K., CHUANG K.T. 2000. Modelling and simulation of flow maldistribution in random packed columns with gas-liquid countercurrent flow. Chemical Engineering Research and Design, 78: 378-388.
  • VAN ANTWERPEN W., DU TOIT C.G., ROUSSEAU P.G. 2010. A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nuclear Engineering and Design, 240: 1803-1818.
  • VORTMEYER D., SCHUSTER J. 1983. Evaluation of steady flow profiles in rectangular and circular packed-beds by a variational method. Chemical Engineering Science, 38: 1691-1699.
  • WAMMES W.J.A. MIDDELKAMP J., HUISMAN W.J., DEBAAS C.M., WESTERTERP K.R. 1991. Hydrodynamics in a cocurrent gas-liquid trickle bed at elevated pressures. AIChE Journal, 37: 1849-1862.
  • WANG TF., WANG JF, JIN Y. 2007. Slurry reactors for gas to liquid processes: A review. Industrial & Engineering Chemistry Research, 46: 5824-5847.
  • WANG W., LU B.N., ZHANG N., SHI Z.S., LI J.H. 2010. A review of multiscale CFD for gas-solid CFB modelling. International Journal of Multiphase Flow. 36: 109-118.
  • WANG Y., CHEN J., LARACHI F. 2013. Modelling and simulation of trickle-bed reactors using computational fluid dynamics: A state-of-the-art review. Canadian Journal of Chemical Engineering, 91: 136-180.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4fcad0f-468e-4f66-8802-8a51a28cfb3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.