PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and performance test of a novel solar tracking sensor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new solar tracking sensor based on image recognition is proposed and designed to solve the problem of low accuracy of photoelectric tracking in photovoltaic power generation. The sensor can directly output its angular deviation from the sun, and its mechanical structure and working principle are analysed in detail. We use a high-precision camera to collect the image of the two slots on the projector surface and use the Hough transform to identify the image of the light seam. After obtaining the linear equation for the two slots, the coordinate of the intersection point is found, and the calculation of the solar altitude and azimuth can be realized. We have improved the Hough transform scheme by using the skeleton image of the slots instead of the edge image. The improvement of the scheme has been proved to effectively improve the detection accuracy. A calibration test board is used to test the sensor and experimental results show that the scheme can achieve the measurement of azimuth and altitude with the accuracy of be 0.05°, which can meet the detection accuracy requirements of the solar tracking in photovoltaic power generation and many other photoelectric tracking implementations.
Rocznik
Strony
289--303
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Fujian Vocational & Technical College of Water Conservancy & Electric Power, School of Electric Power Engineering, Yongan 366000, China
Bibliografia
  • [1] Walczak, M., Bychto, L., & Kraniewski, J. (2022). Design and Evaluation of a Low-Cost Solar Simulator and Measurement System for Low-Power Photovoltaic Panels. Metrology and Measurement Systems, 29(4), 685-700. https://doi.org/10.24425/mms.2022.143067
  • [2] Mah, A. X. Y., Ho, W. S., Hassim, M. H., & Hashim, H. (2021). Optimization of Photovoltaic Array Orientation and Performance Evaluation of Solar Tracking Systems. Chemical Engineering Transactions, 83, 109-114. https://doi.org/10.3303/CET2183019
  • [3] Gutierrez, S., Rodrigo, P. M., Alvarez, J., Acero, A., & Montoya, A. (2020). Development and testing of a single-axis photovoltaic sun tracker through the Internet of Things. Energies, 13(10), 2547. https://doi.org/10.3390/en13102547
  • [4] Zhao, D., Xu, E., Wang, Z., Yu, Q., Xu, L., & Zhu, L. (2016). Influences of installation and tracking errors on the optical performance of a solar parabolic trough collector. Renew Energy, 94, 197-212. https://doi.org/10.1016/j.renene.2016.03.036
  • [5] Melo, K., Tavares, L. R., & Villalva, M. G. (2021). Statistical Analysis of Solar Position Calculation Algorithms: SPA and Grena 1-5. IEEE Latin America Transactions, 19(7), 1145-1152. https://doi.org/10.1109/TLA.2021.9461843
  • [6] Miotto, M., Gonzatti, F., Franchi, D., da Silva, E. I., & Farret, F. A. (2021). Pseudo-azimuthal dual-axis solar tracking technique using the hourly method for photovoltaic modules. Journal of Control, Automation and Electrical Systems, 32, 983-991. https://doi.org/10.1007/s40313-021-00721-0
  • [7] Salgado-Conrado, L. (2018). A review on sun position sensors used in solar applications. Renewable and Sustainable Energy Reviews, 82, 2128-2146. https://doi.org/10.1016/j.rser.2017.08.040
  • [8] Parthipan, J., Raju, B. N., & Senthilkumar, S. (2016). Design of one axis three position solar tracking system for paraboloidal dish solar collector. Materials Today: Proceedings, 3(6), 2493-2500. https://doi.org/10.1016/j.matpr.2016.04.167
  • [9] Kabalci, E., & Calpbinici, A. (2020). Design and Implementation of Control Algorithms for Single-Axis Sun Tracking Systems. Journal of Power Technologies, 100(1), 32-42. https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1460
  • [10] Jamroen, C., Komkum, P., Kohsri, S., Himananto, W., Panupintu, S., & Unkat, S. (2020). A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments, 37, 100618. https://doi.org/10.1016/j.seta.2019.100618
  • [11] Saeedi, M., & Effatnejad, R. (2021). A new design of dual-axis solar tracking system with LDR sensors by using the wheatstone bridge circuit. IEEE Sensors Journal, 21(13), 14915-14922. https://doi.org/10.1109/JSEN.2021.3072876
  • [12] Canada-Bago, J., Fernandez-Prieto, J. A., Gadeo-Martos, M. A., & Perez-Higueras, P. (2020). Knowledge-Based Sensors for Controlling A High-Concentration Photovoltaic Tracker. Sensors, 20(5), 1315. https://doi.org/10.3390/s20051315
  • [13] Dadi, V., & Peravali, S. (2020). Optimization of light-dependent resistor sensor for the application of solar energy tracking system. SN Applied Sciences, 2(9), 1499. https://doi.org/10.1007/s42452-020-03293-x
  • [14] Diaz, A., Garrido, R., & Soto-Bernal, J. J. (2018). A filtered sun sensor for solar tracking in HCPV and CSP systems. IEEE Sensors Journal, 19(3), 917-925. https://doi.org/10.1109/JSEN.2018.2879460
  • [15] Jamroen, C., Fongkerd, C., Krongpha, W., Komkum, P., Pirayawaraporn, A., & Chindakham, N. (2021). A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis. Applied Energy, 299, 117295. https://doi.org/10.1016/j.apenergy.2021.117295
  • [16] Wang, Y., Yu, X., Wang, D., Feng, Q., & Shi, Y. (2019). Analog Detection of PSD Sensor and Sunshine Position Tracking Performance in Four Quadrant Arrays. International Journal of Performability Engineering, 15(9), 2346. https://doi.org/10.23940/ijpe.19.09.p7.23462355
  • [17] Gómez-Uceda, F. J., Ramirez-Faz, J., Varo-Martinez, M., & Fernández-Ahumada, L. M. (2021). New omnidirectional sensor based on open-source software and hardware for tracking and backtracking of dual-axis solar trackers in photovoltaic plants. Sensors, 21(3), 726. https://doi.org/10.3390/s21030726
  • [18] Romijn, J., Vollebregt, S., May, A., Erlbacher, T., van Zeijl, H. W., Leijtens, J., ... & Sarro, P. M. (2022, January). Visible Blind Quadrant Sun Position Sensor in a Silicon Carbide Technology. In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS) (pp. 535-538). IEEE. https://doi.org/10.1109/MEMS51670.2022.9699533
  • [19] Hamouda, A., Ababneh, M., Zahrani, M. A., & Chabchoub, A. (2020). Fuzzy Controller for Sun Tracking (Using Image Processing). In Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 2 (pp. 1258-1266). Springer International Publishing. https://doi.org/10.1007/978-3-030-29513-4_92
  • [20] Ruelas, A., Velázquez, N., Villa-Angulo, C., Acuña, A., Rosales, P., & Suastegui, J. (2017). A solar position sensor based on image vision. Sensors, 17(8), 1742. https://doi.org/10.3390/s17081742
  • [21] Angulo, M., Díaz-Ponce, A., Valentín, L., Valdivia, R., & Keshtkar, S. (2020). Design and Control of a Passive Solar Tracking System Using a Sky Imager. In Industrial and Robotic Systems: LASIRS 2019 (pp. 170-178). Springer International Publishing. https://doi.org/10.1007/978-3-030-45402-9_17
  • [22] Carballo, J. A., Bonilla, J., Roca, L., & Berenguel, M. (2018). New low-cost solar tracking system based on open source hardware for educational purposes. Solar Energy, 174, 826-836. https://doi.org/10.1016/j.solener.2018.09.064
  • [23] Kuttybay, N., Saymbetov, A., Mekhilef, S., Nurgaliyev, M., Tukymbekov, D., Dosymbetova, G., ... & Svanbayev, Y. (2020). Optimized single-axis schedule solar tracker in different weather conditions. Energies, 13(19), 5226. https://doi.org/10.3390/en13195226
  • [24] Li, X., Su, J., Yue, Z., Wang, S., & Zhou, H. (2022). Extracting navigation line to detect the maize seedling line using median-point Hough transform. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 38(5), 167-174. https://doi.org/10.1590/0103-8478cr20190699
  • [25] Zhuo, H. B., Bai, F. Z., & Xu, Y. X. (2020). Machine vision detection of pointer features in images of analog meter displays. Metrology and Measurement Systems, 27(4), 589-599. https://doi.org/10.24425/mms.2020.134840
  • [26] Quan, P., Lin, H., Liang, Z., & Di, S. (2021). Research on fast identification and location of contour features of electric vehicle charging port in complex scenes. IEEE Access, 10, 26702-26714. https://doi.org/10.1109/ACCESS.2021.3092210
  • [27] Reiter, T., McCann, M., Connolly, J., & Haughey, S. (2021). An Investigation of Edge Bead Removal Width Variability, Effects and Process Control in Photolithographic Manufacturing. IEEE Transactions on Semiconductor Manufacturing, 35(1), 60-66. https://doi.org/10.1109/TSM.2021.3129770
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4f81434-fe78-45ab-bc82-d347cfb56c9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.