Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Binary Hausdorff Symmetry measure based seeded region growing for retinal vessel segmentation

Warianty tytułu
Języki publikacji
Automated retinal vessel segmentation plays an important role in computer-aided diagnosis of serious diseases such as glaucoma and diabetic retinopathy. This paper contributes, (1) new Binary Hausdorff Symmetry (BHS) measure based automatic seed selection, and (2) new edge distance seeded region growing (EDSRG) algorithm for retinal vessel segmentation. The proposed BHS measure directly provides a binary symmetry decision at each pixel without the computation of continuous symmetry map and image thresholding. In a multiscale mask, the BHS measure is computed using the distance sets of opposite direction angle bins with sub-pixel resolution. The computation of the BHS measure from the Hausdorff distance sets involves point set matching based geometrical interpretation of symmetry. Then, we design a new edge distance seeded region growing (EDSRG) algorithm with the acquired seeds. The performance evaluation in terms of sensitivity, specificity and accuracy is done on the publicly available DRIVE, STARE and HRF databases. The proposed method is found to achieve state-of-the-art vessel segmentation accuracy in three retinal databases; DRIVE- sensitivity (0.7337), specificity (0.9752), accuracy (0.9539); STARE-sensitivity (0.8403), specificity (0.9547), accuracy (0.9424); and HRF-sensitivity (0.8159), specificity (0.9525), accuracy (0.9420).
  • School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, India
  • School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, India
  • School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, India
  • [1] Bowling B. Clinical ophthalmology. 6th ed. London, UK: Elsevier Health Sciences; 2012.
  • [2] Meier J, Nyúl LG, Hornegger J, Michelson G. Glaucoma risk index: automated glaucoma detection from color fundus images. Med Image Anal 2010;14(3):471–81.
  • [3] Rajan SE. Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images. Biocybern Biomed Eng 2014;34(2):117–24.
  • [4] Flynn J, O'Keefe M, Cahill M. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med Image Anal 2002;6 (4):407–29.
  • [5] Grisan E, Ruggeri A. Extraction and quantitative description of vessel features in hypertensive retinopathy fundus images. Book Abstracts 2nd International Workshop on Computer Assisted Fundus Image Analysis; 2001.
  • [6] Hunter A, Steel D, Basu A, Ryder R, Kennedy RL. Measurement of retinal vessel widths from fundus images based on 2-D modelling. IEEE Trans Med Imaging 2004;23 (10):1196–204.
  • [7] Staal J, Ginneken B, Loog M, Abramoff MD. Comparative study of retinal vessel segmentation methods on a new publicly available database. Proc. of SPIE Medical Imaging, vol. 5370. 2004. pp. 648–65.
  • [8] Abramoff MD, Niemeijer M, Viergever MA, Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 2004;23(4):501–9.
  • [9] Leandro JJG, Cesar RM, Jelinek HF, Cree MJ. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 2006;25(9):1214–22.
  • [10] Tegolo D, Trucco E. FABC: retinal vessel segmentation using AdaBoost. IEEE Trans Inf Technol Biomed 2010;14 (5):1267–74.
  • [11] Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 2007;26(10):1357–60.
  • [12] Marin D, Aquino A, Gegundez-Arias ME, Bravo JM. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 2011;30(1):146–58.
  • [13] Keating D, Williamson TH, Elliott AT. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol 1996;80:940–4.
  • [14] Chatterjee S, Katz N, Nelson M, Goldbaum M. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 1989;8(3):263–9.
  • [15] Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 2000;19(3):203–10.
  • [16] Chutatape O, Krishnan SM. Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Trans Biomed Eng 2002;49(2):168–72.
  • [17] Zhang L, Zhang L, Karray F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 2010;40(4):438–45.
  • [18] Klein JC. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 2001;10(7):1010–9.
  • [19] Campilho A. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 2006;25(9):1200–13.
  • [20] Barman SA, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka AR, et al. An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Methods Programs Biomed 2012;108(2):600–16.
  • [21] Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, Kubena T, et al. Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process 2013;7(4):373–83.
  • [22] Zheng L, Krishnan SM. Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters. Proc. IEEE Int. Conf. on Engineering in Medicine and Biology Society, vol. 6. 1998. pp. 3144–9.
  • [23] Hong S, Turner JN, Tanenbaum HL, Roysam B. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inf Technol Biomed 1999;3(2):125–38.
  • [24] Mertins A. Segmentation of retinal vessels with a hysteresis binary-classification paradigm. Comput Med Imaging Graphics 2012;36(4):325–35.
  • [25] Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Interventation—MICCAI'98. Springer Berlin Heidelberg; 1998. p. 130–7.
  • [26] Hughes AD, Stanton AV, Thom SA, Bharath AA, Parker KH. Retinal blood vessel segmentation by means of scale-space analysis and region growing. Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention. UK: Springer-Verlag; 1999. p. 90–7.
  • [27] Hughes AD, Thom SA, Bharath AA, Parker KH. Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 2007;11:47–61.
  • [28] Stewart CV. Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans Med Imaging 2006;25(12):1531–46.
  • [29] Hatfield FN, Knox P, Reakes M, Spencer S, Parry D, Harding SP. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J Franklin Inst 2008;345(7):748–65.
  • [30] Carreira MJ, Ortega M, Penedo MG. A snake for retinal vessel segmentation. Pattern Recognit Image Anal 2007;4478:178–85.
  • [31] Narasimha-Iyer H, Roysam B, Tanenbaum HL. Robust model-based vasculature detection in noisy biomedical images. IEEE Trans Inf Technol Biomed 2004;8:360–76.
  • [32] Ping Z. Segmentation of retinal blood vessel by merging shape, region and edge information. Proceedings of International Conference of Biomedical Engineering and Biotechnology (ICBEB); 2012. p. 888–91.
  • [33] Quek F. A review of vessel extraction techniques and algorithms. ACM Comput Surv – CSUR 2004;36(2):81–121.
  • [34] Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA. Blood vessel segmentation methodologies in retinal images – a survey. Comput Methods Programs Biomed 2012;108(1):407–33.
  • [35] Bischof L. Seeded region growing. IEEE Trans PAMI 1994;16(6):641–7.
  • [36] Puhan NB, Panda G. Hausdorff symmetry operator towards retinal blood vessel segmentation. Proc. IEEE International Conference on Digital Signal Processing (DSP); 2014. pp. 611–6.
  • [37] Woods RE. Digital image processing. 3rd ed. Pearson Education India; 2004.
  • [38] A computational approach to edge detection. IEEE Trans PAMI 1986;8(6):679–98.
  • [39] Hlavac V, Boyle R. Digital image processing and computer vision. 2nd ed. USA: Cengage Learning; 2008.
  • [40] Klanderman GA, Rucklidge WA. Comparing images using the Hausdorff distance. IEEE Trans PAMI 1993;15(9):850–63.
  • [41] Puhan NB, Xia H, Jiang X. Iris recognition on edge maps. IET Comput Vis 2009;3(1):1–7.
  • [42] Narasimha Murty M, Flynn PJ. Data clustering: a review. ACM Comput Surv 1999;31(3):264–323.
  • [43] Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett 1999;9(3):293–300.
  • [44] Zeng G, Body M, Hacid M. Seeded region growing: an extensive and comparative study. Pattern Recognit Lett 2005;26(8):1139–56.
  • [45] Yau DKY, Elmagarmid AK, Aref WG. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans Image Process 2001;10 (10):1454–66.
  • [46] Niemeijer M, Staal JJ, Ginneken BV, Loog M, Abramoff MD. DRIVE: digital retinal images for vessel extraction; 2004,
  • [47] Wolfson H, Yeshurun Y. Context-free attentional operators: the generalized symmetry transform. Int J Comput Vis 1995;14(2):119–30.
  • [48] A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979;9(1):62–6.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.