PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discussion on different controllers used for the navigation of mobile robot

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Robots that can comprehend and navigate their surroundings independently on their own are considered intelligent mobile robots (MR). Using a sophisticated set of controllers, artificial intelligence (AI), deep learning (DL), machine learning (ML), sensors, and computation for navigation, MR's can understand and navigate around their environments without even being connected to a cabled source of power. Mobility and intelligence are fundamental drivers of autonomous robots that are intended for their planned operations. They are becoming popular in a variety of fields, including business, industry, healthcare, education, government, agriculture, military operations, and even domestic settings, to optimize everyday activities. We describe different controllers, including proportional integral derivative (PID) controllers, model predictive controllers (MPCs), fuzzy logic controllers (FLCs), and reinforcement learning controllers used in robotics science. The main objective of this article is to demonstrate a comprehensive idea and basic working principle of controllers utilized by mobile robots (MR) for navigation. This work thoroughly investigates several available books and literature to provide a better understanding of the navigation strategies taken by MR. Future research trends and possible challenges to optimizing the MR navigation system are also discussed.
Twórcy
autor
  • Faculty of Computer Science, Electronics, and Telecommunications, AGH University of Science and Technology, Krakow, Poland
autor
  • Faculty of Computer Science, Electronics, and Telecommunications, AGH University of Science and Technology, Krakow, Poland
Bibliografia
  • [1] S. G. Tzafestas, “Mobile Robot Control and Navigation: A Global Overview,” Journal of Intelligent & Robotic Systems, vol. 91, no. 1, pp. 35-58, Mar. 2018. doi:10.1007/s10846-018-0805-9
  • [2] J. Wang and D. Herath, “How to Move? Control, Navigation and Path Planning for Mobile Robots,” Foundations of Robotics, pp. 205-238, 2022. doi:10.1007/978-981-19-1983-1_8
  • [3] H. Qiao, J. Chen and X. Huang, "A Survey of Brain-Inspired Intelligent Robots: Integration of Vision, Decision, Motion Control, and Musculoskeletal Systems," in IEEE Transactions on Cybernetics, vol. 52, no. 10, pp. 11267-11280, Oct. 2022. doi:10.1109/TCYB.2021.3071312
  • [4] R. Raj and A. Kos, “A Comprehensive Study of Mobile Robot: History, Developments, Applications, and Future Research Perspectives,” Applied Sciences, vol. 12, no. 14, p. 6951, Jul. 2022. doi:10.3390/app12146951
  • [5] R. C. Arkin, "Behavior-Based Robotics", MIT Press, Cambridge, 1998. ISBN: 9780262529204.
  • [6] J. J. Wang, “Design and Research of Intelligent Mobile Robot Based on IOT Information Fusion,” IOP Conference Series: Earth and Environmental Science, vol. 470, no. 1, p. 012003, Apr. 2020. doi:10.1088/1755-1315/470/1/012003
  • [7] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Concepts, methods, theoretical framework, and applications,” International Journal of Advanced Robotic Systems, vol. 16, no. 2, p. 172988141983959, Mar. 2019. doi:10.1177/1729881419839596
  • [8] B. Paden, M. Čáp, S. Z. Yong, D. Yershov and E. Frazzoli, "A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles," in IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33-55, March 2016. doi:10.1109/TIV.2016.2578706
  • [9] B. Kiumarsi, K. G. Vamvoudakis, H. Modares and F. L. Lewis, "Optimal and Autonomous Control Using Reinforcement Learning: A Survey," in IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2042-2062, June 2018. doi:10.1109/TNNLS.2017.2773458
  • [10] M. Elbanhawi and M. Simic, "Sampling-Based Robot Motion Planning: A Review," in IEEE Access, vol. 2, pp. 56-77, 2014. doi:10.1109/ACCESS.2014.2302442
  • [11] G. Bresson, Z. Alsayed, L. Yu and S. Glaser, "Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving," in IEEE Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194-220, Sept. 2017. doi:10.1109/TIV.2017.2749181
  • [12] S. Y. Chen, "Kalman Filter for Robot Vision: A Survey," in IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4409-4420, Nov. 2012. doi:10.1109/TIE.2011.2162714
  • [13] K. Zhu and T. Zhang, "Deep reinforcement learning based mobile robot navigation: A review," in Tsinghua Science and Technology, vol. 26, no. 5, pp. 674-691, Oct. 2021. doi:10.26599/TST.2021.9010012
  • [14] A. Khan, B. Rinner and A. Cavallaro, "Cooperative Robots to Observe Moving Targets: Review," in IEEE Transactions on Cybernetics, vol. 48, no. 1, pp. 187-198, Jan. 2018. doi:10.1109/TCYB.2016.2628161
  • [15] J. David and P. V. Manivannan, “Control of truck-trailer mobile robots: a survey,” Intelligent Service Robotics, vol. 7, no. 4, pp. 245-258, May 2014. doi:10.1007/s11370-014-0152-z
  • [16] Y. Mohan and S. G. Ponnambalam, "An extensive review of research in swarm robotics," 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 2009, pp. 140-145. doi:10.1109/NABIC.2009.5393617
  • [17] S. Haddadin, A. De Luca and A. Albu-Schäffer, "Robot Collisions: A Survey on Detection, Isolation, and Identification," in IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1292-1312, Dec. 2017. doi:10.1109/TRO.2017.2723903
  • [18] J. F. Canny, "Complexity of Robot Motion Planning,", The MIT Press, USA, 1988.
  • [19] A. M. Meystel, "Autonomous Mobile Robots: Vehicles with Cognitive Control," World Scientific, Singapore, 1991. doi:10.1142/0256
  • [20] J. Borenstein, H. R. Everett, and L. Feng, "Navigating Mobile Robots: Systems and Techniques," Peters A.K. Ltd/CRC Press, NY, USA, 1996.
  • [21] J. L. Jones, B. A. Seiger, and A. M. Flynn, "Mobile Robots: Inspiration to Implementation," A K Peters/CRC Press, Second Edition (2nd ed.), 1998. doi:10.1201/9781439863985
  • [22] U. Nehmzow, "Mobile Robotics: A Practical Introduction," Springer London, 2003. doi:10.1007/978-1-4471-0025-6
  • [23] F. Cuesta, and A. Ollero, "Intelligent Mobile Robot Navigation," Springer Berlin, Heidelberg, 2005. doi:10.1007/b14079
  • [24] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics, 2nd ed. Cambridge: Cambridge University Press, 2010.
  • [25] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, “Introduction to Autonomous Mobile Robots,” 2nd Edition, The MIT Press, USA, 2011.
  • [26] Li-H. Juang, “Intelligent Robots,” Nova Science Publishers, Inc., NY, USA, 2019.
  • [27] S. MohandSaidi and R. Mellah, “Real-Time Speed Control of a Mobile Robot Using PID Controller,” In: B. Lejdel, E. Clementini, L. Alarabi (eds), Artificial Intelligence and Its Applications (AIAP 2021), Lecture Notes in Networks and Systems, vol 413. Springer, Cham. pp. 548-556, 2022. doi:10.1007/978-3-030-96311-8_51
  • [28] J. E. Normey-Rico, I. Alcalá, J. Gómez-Ortega, and E. F. Camacho, “Mobile robot path tracking using a robust PID controller,” Control Engineering Practice, vol. 9, no. 11, pp. 1209-1214, Nov. 2001. doi:10.1016/s0967-0661(01)00066-1
  • [29] Junzhi Yu, Min Tan, Shuo Wang and Erkui Chen, "Development of a biomimetic robotic fish and its control algorithm," in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 4, pp. 1798-1810, Aug. 2004. doi:10.1109/TSMCB.2004.831151
  • [30] V. Parra-Vega, S. Arimoto, Yun-Hui Liu, G. Hirzinger and P. Akella, "Dynamic sliding PID control for tracking of robot manipulators: theory and experiments," in IEEE Transactions on Robotics and Automation, vol. 19, no. 6, pp. 967-976, Dec. 2003. doi:10.1109/TRA.2003.819600
  • [31] E. M. Jafarov, M. N. A. Parlakci and Y. Istefanopulos, "A new variable structure PID-controller design for robot manipulators," in IEEE Transactions on Control Systems Technology, vol. 13, no. 1, pp. 122-130, Jan. 2005. doi:10.1109/TCST.2004.838558
  • [32] Y. Su, P. C. Müller, and C. Zheng, "Global Asymptotic Saturated PID Control for Robot Manipulators," in IEEE Transactions on Control Systems Technology, vol. 18, no. 6, pp. 1280-1288, Nov. 2010. doi:10.1109/TCST.2009.2035924
  • [33] D. K. Tiep, K. Lee, D.-Y. Im, B. Kwak, and Y.-J. Ryoo, “Design of Fuzzy-PID Controller for Path Tracking of Mobile Robot with Differential Drive,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 18, no. 3, pp. 220-228, Sep. 2018. doi:10.5391/ijfis.2018.18.3.220
  • [34] “Linear Model Predictive Control,” Autonomous Robots Lab. Available online: https://www.autonomousrobotslab.com/linear-model-predictive-control.html (accessed on September 15, 2023).
  • [35] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789-814, Jun. 2000. doi:10.1016/s0005-1098(99)00214-9
  • [36] C. E. García, D. M. Prett, and M. Morari, “Model predictive control: Theory and practice-A survey,” Automatica, vol. 25, no. 3, pp. 335-348, May 1989. doi:10.1016/0005-1098(89)90002-2
  • [37] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. Doyle, Process Dynamics and Control. John Wiley & Sons, 2016.
  • [38] J. B. Rawlings, "Tutorial overview of model predictive control," in IEEE Control Systems Magazine, vol. 20, no. 3, pp. 38-52, June 2000. doi:10.1109/37.845037
  • [39] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engineering perspective,” The International Journal of Advanced Manufacturing Technology, vol. 117, no. 5-6, pp. 1327-1349, Aug. 2021. doi:10.1007/s00170-021-07682-3
  • [40] J. L. Piovesan and H. G. Tanner, "Randomized model predictive control for robot navigation," 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, pp. 94-99. doi:10.1109/ROBOT.2009.5152468
  • [41] T. Howard, M. Pivtoraiko, R. A. Knepper and A. Kelly, "Model-Predictive Motion Planning: Several Key Developments for Autonomous Mobile Robots," in IEEE Robotics & Automation Magazine, vol. 21, no. 1, pp. 64-73, March 2014. doi:10.1109/MRA.2013.2294914
  • [42] Y. Chen, F. Zhao and Y. Lou, "Interactive Model Predictive Control for Robot Navigation in Dense Crowds," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 4, pp. 2289-2301, April 2022. doi:10.1109/TSMC.2020.3048964
  • [43] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-Aware Model Predictive Control for Quadrotors,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2018. doi:10.1109/iros.2018.8593739
  • [44] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust Constrained Learning-based NMPC enabling reliable mobile robot path tracking,” The International Journal of Robotics Research, vol. 35, no. 13, pp. 1547-1563, Jul. 2016. doi:10.1177/0278364916645661
  • [45] I. Lenz, R. Knepper, and A. Saxena, “DeepMPC: Learning Deep Latent Features for Model Predictive Control”, Robot Learning Lab, Cornell University, 2015. Available online: http://deepmpc.cs.cornell.edu/DeepMPC.pdf (accessed on Sept 19, 2023).
  • [46] Z. Wang, G. Li, H. Jiang, Q. Chen and H. Zhang, "Collision-Free Navigation of Autonomous Vehicles Using Convex Quadratic Programming-Based Model Predictive Control," in IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp. 1103-1113, June 2018. doi:10.1109/TMECH.2018.2816963
  • [47] T. A. V. Teatro, J. M. Eklund and R. Milman, "Nonlinear Model Predictive Control for Omnidirectional Robot Motion Planning and Tracking With Avoidance of Moving Obstacles," in Canadian Journal of Electrical and Computer Engineering, vol. 37, no. 3, pp. 151-156, Summer 2014. doi:10.1109/CJECE.2014.2328973
  • [48] R. Raj, and A. Kos, “Artificial Intelligence: Evolution, Developments, Applications, and Future Scope,” PRZEGLĄD ELEKTROTECHNICZNY, vol. 1, no. 2, pp. 1-13, Feb. 2023. doi:10.15199/48.2023.02.01
  • [49] S. M. Raguraman, D. Tamilselvi and N. Shivakumar, "Mobile robot navigation using Fuzzy logic controller," 2009 International Conference on Control, Automation, Communication and Energy Conservation, Perundurai, India, 2009, pp. 1-5.
  • [50] H. Omrane, M. S. Masmoudi, and M. Masmoudi, “Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation,” Computational Intelligence and Neuroscience, vol. 2016, pp. 1-10, 2016. doi:10.1155/2016/9548482
  • [51] A. Pandey, R. K. Sonkar, K. K. Pandey and D. R. Parhi, "Path planning navigation of mobile robot with obstacles avoidance using fuzzy logic controller," 2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 2014, pp. 39-41. doi:10.1109/ISCO.2014.7103914
  • [52] M. Abdelwahab, V. Parque, A. M. R. Fath Elbab, A. A. Abouelsoud and S. Sugano, "Trajectory Tracking of Wheeled Mobile Robots Using Z-Number Based Fuzzy Logic," in IEEE Access, vol. 8, pp. 18426-18441, 2020. doi:10.1109/ACCESS.2020.2968421
  • [53] H. A. Hagras, "A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots," in IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 524-539, Aug. 2004. doi:10.1109/TFUZZ.2004.832538
  • [54] P. Rusu, E. M. Petriu, T. E. Whalen, A. Cornell and H. J. W. Spoelder, "Behavior-based neuro-fuzzy controller for mobile robot navigation," in IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 4, pp. 1335-1340, Aug. 2003. doi:10.1109/TIM.2003.816846
  • [55] F. Kamil and M. Y. Moghrabiah, “Multilayer Decision-Based Fuzzy Logic Model to Navigate Mobile Robot in Unknown Dynamic Environments,” Fuzzy Information and Engineering, vol. 14, no. 1, pp. 51-73, Dec. 2021. doi:10.1080/16168658.2021.2019432
  • [56] D. K. Pratihar, K. Deb, and A. Ghosh, “A genetic-fuzzy approach for mobile robot navigation among moving obstacles,” International Journal of Approximate Reasoning, vol. 20, no. 2, pp. 145-172, Feb. 1999. doi:10.1016/s0888-613x(98)10026-9
  • [57] I. Reguii, I. Hassani and C. Rekik, "Neuro-fuzzy Control of a Mobile Robot," 2022 IEEE 21st international Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 2022, pp. 45-50. doi:10.1109/STA56120.2022.10018999
  • [58] M. J. M, R. Mathew and S. S. Hiremath, "Reinforcement Learning Based Approach For Mobile Robot Navigation," 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 2019, pp. 523-526. doi:10.1109/ICCIKE47802.2019.9004256
  • [59] R. Raj and A. Kos, “Dynamic Obstacle Avoidance Technique for Mobile Robot Navigation Using Deep Reinforcement Learning,” International Journal of Emerging Trends in Engineering Research, vol. 11, no. 9, pp. 307-314, Sep. 2023. doi:10.30534/ijeter/2023/031192023
  • [60] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and D. Hassabis, “Reinforcement Learning, Fast and Slow,” Trends in Cognitive Sciences, vol. 23, no. 5, pp. 408-422, May 2019. doi:10.1016/j.tics.2019.02.006
  • [61] L. Tai, G. Paolo and M. Liu, "Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, pp. 31-36. doi:10.1109/IROS.2017.8202134
  • [62] C. Chen, Y. Liu, S. Kreiss and A. Alahi, "Crowd-Robot Interaction: Crowd-Aware Robot Navigation With Attention-Based Deep Reinforcement Learning," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 6015-6022. doi:10.1109/ICRA.2019.8794134
  • [63] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4, pp. 279-292, May 1992. doi:10.1007/bf00992698
  • [64] G. Kahn, A. Villaflor, B. Ding, P. Abbeel and S. Levine, "Self-Supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation," 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 2018, pp. 5129-5136. doi:10.1109/ICRA.2018.8460655
  • [65] A. Singla, S. Padakandla and S. Bhatnagar, "Memory-Based Deep Reinforcement Learning for Obstacle Avoidance in UAV With Limited Environment Knowledge," in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 107-118, Jan. 2021. doi:10.1109/TITS.2019.2954952
  • [66] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mobile robot navigation via inverse reinforcement learning,” The International Journal of Robotics Research, vol. 35, no. 11, pp. 1289-1307, Jul. 2016. doi:10.1177/0278364915619772
  • [67] Cang Ye, N. H. C. Yung and Danwei Wang, "A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance," in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 33, no. 1, pp. 17-27, Feb. 2003. doi:10.1109/TSMCB.2003.808179
  • [68] Z. Liu, Y. Zhai, J. Li, G. Wang, Y. Miao and H. Wang, "Graph Relational Reinforcement Learning for Mobile Robot Navigation in Large-Scale Crowded Environments," in IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 8, pp. 8776-8787, Aug. 2023. doi:10.1109/TITS.2023.3269533
  • [69] J. Vargas, S. Alsweiss, O. Toker, R. Razdan, and J. Santos, “An Overview of Autonomous Vehicles Sensors and Their Vulnerability to Weather Conditions,” Sensors, vol. 21, no. 16, p. 5397, Aug. 2021. doi:10.3390/s21165397
  • [70] P. K. Murali, M. Kaboli, and R. Dahiya, “Intelligent In‐Vehicle Interaction Technologies,” Advanced Intelligent Systems, vol. 4, no. 2, Oct. 2021. doi:10.1002/aisy.202100122
  • [71] S. Khan, S. Parkinson, and Y. Qin, “Fog computing security: a review of current applications and security solutions,” Journal of Cloud Computing, vol. 6, no. 1, Aug. 2017. doi:10.1186/s13677-017-0090-3
  • [72] A. Biswas and H.-C. Wang, “Autonomous Vehicles Enabled by the Integration of IoT, Edge Intelligence, 5G, and Blockchain,” Sensors, vol. 23, no. 4, p. 1963, Feb. 2023. doi:10.3390/s23041963
  • [73] R. Raj, and A. Kos, “Designing and Analysis of an Architecture of Motion Control for a Mobile Robot Using Simulation,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 12, no. 4, pp. 172-177, Aug. 2023. doi:10.30534/ijatcse/2023/051242023
  • [74] Y. Chen et al., “Human mobile robot interaction in the retail environment,” Scientific Data, vol. 9, no. 1, Nov. 2022. doi:10.1038/s41597-022-01802-8
  • [75] R. Raj and A. Kos, “An Optimized Energy and Time Constraints-Based Path Planning for the Navigation of Mobile Robots Using an Intelligent Particle Swarm Optimization Technique,” Applied Sciences, vol. 13, no. 17, p. 9667, Aug. 2023. doi:10.3390/app13179667
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
2. This work was supported financially by the AGH University of Science and Technology, Krakow, Poland, under subvention no. 16.16.230.434.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4f58bff-24ff-4ed3-9c77-98b4c3eefde9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.