PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of pneumatic melt drawing of polypropylene super-thin fibers in the Laval nozzle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Melt spinning of the fibers by supersonic air jet in the Laval nozzle is a novel, efficient and energy saving method of formation of super-thin fibers. In the process, polymer melt is extruded from a row of orifices and fast drawn by the pneumatic forces. In the modelling, air velocity, temperature and pressure distributions are computed from the k-! aerodynamic model. Computations of the polymer air-drawing dynamics are based on the mathematical model of melt spinning in a single-, thin-filament approximation and Phan-Thien/Tanner non-linear viscoelasticity of the polymer melt. Axial profiles of the polymer velocity, temperature, tensile stress and rheological extra-pressure are computed. Influence of the Laval nozzle geometry, initial air compression, an initial melt temperature, a polymer mass output and the diameter of the melt extrusion die is discussed. The role of the polymer molecular weight, melt viscosity and relaxation time is considered. Example computations show the influence of important processing and material parameters. In the supersonic process, a high negative internal extra-pressure is predicted in the polymer melt under high elongation rates which may lead to cavitation and longitudinal burst splitting of the filament into a high number of sub-filaments. A hypothetical number of sub-filaments at the splitting is estimated from an energetic criterion. The diameter of the sub-filaments may reach the range of nano-fibers. A substantial influence of the Laval nozzle geometry is also predicted.
Rocznik
Strony
43--54
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research of the Polish Academy of Sciences, 5B Pawinskiego St., 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research of the Polish Academy of Sciences, 5B Pawinskiego St., 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research of the Polish Academy of Sciences, 5B Pawinskiego St., 02-106 Warsaw, Poland
Bibliografia
  • [1] R.R. Bresee and W.C. Ko, “Fiber formation during melt blowing” Int. Nonwovens J. 12 (2), 21-28 (2003).
  • [2] R.R. Bresee, “Influence of processing conditions on melt blown web structure. Part 1 - DCD”, Int. Nonwovens J. 13 (1), 49-55 (2004).
  • [3] L. Jarecki and Z. Lewandowski, “Mathematical modelling of the pneumatic melt spinning of isotactic polypropylene. Part III. Computations of the process dynamics”, Fibres Textiles Eastern Eur. 17 (1), 75-80 (2009).
  • [4] L. Gerking, “Method and device for the production of an essentially continous fine thread”, US Pat. 6, 800, 226 B1 (2004).
  • [5] L. Gerking, “Nanoval process for spunbonded nowovens”, Chem. Fibers Int. 52, 424-426 (2002).
  • [6] H.M. Krutka, R.I. Shambaugh, and D.V. Papavasiliou, “Effects of die geometry on the flow field of the melt blowing process”, Ind. Eng. Chem. Res. 42, 5541-5553 (2003).
  • [7] T. Chen, X. Wang, and X. Huang, “Modeling the air-jet flow field of a dual slot die in the melt blowing nonwoven process”, Textile Res. J. 74 (11), 1018-1024 (2004).
  • [8] H.M. Krutka, R.I. Shambaugh, and D.V. Papavasiliou, “Using computational fluid dynamics to simulate flow fields from various melt blowing dies”, Int. Nonwovens J. 14, 2-8 (2005).
  • [9] A. Allimant, M.P. Planche, Y. Bailly, and L. Dembinski, “Progress in gas atomization of liquid metals by means of a De Laval nozzle”, Powder Techn. 190, 79-83 (2009).
  • [10] S. Matsuo, M. Tanaka, Y. Otobe, H. Kashimura, H. Kim, and T. Setoguchi, “Effect of axisymmetric sonic nozzle geometry on characteristics of supersonic air jet”, J. Thermal Sci. 13, 121-126 (2004).
  • [11] S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
  • [12] B.E. Launder and D.B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972.
  • [13] D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Inc., Toronto, 1998.
  • [14] D.C. Wilcox, “Reassessment of the scale-determining equation for advanced turbulence models”, AIAA J. 26, 1299-1310 (1988).
  • [15] D.C. Wilcox, “Multiscale models for turbulent flow”, AIAA J. 26, 1311-1320 (1988).
  • [16] A. Ziabicki, Fundamentals of Fibre Formation, J. Wiley, London, 1976.
  • [17] A. Ziabicki, L. Jarecki, and A. Wasiak, “Dynamic modelling of melt spinning”, Comput. Theoret. Polymer Sci. 8, 143-157 (1998).
  • [18] T. Chen and X. Huang, “Modeling polymer air drawing in the melt blowing nonwoven process”, Textile Res. J. 73, 651-654 (2003).
  • [19] T. Chen, X. Wang, and X. Huang, “Effects of processing parameters on the fiber diameter of melt blown nonwoven fabrics”, Textile Res. J. 75, 76-80 (2005).
  • [20] S. Kase and T. Matsuo, “Studies of melt spinning. I. On the stability of melt spinning”, J. Polymer Sci. A-3, 2541-2554 (1965).
  • [21] S. Kase and T. Matsuo, “Studies on melt spinning. II. Steadystate and transient solutions of fundamental equations compared with experimental results”, J. Appl. Polymer Sci. 11, 251-287 (1967).
  • [22] R.G. Larson, Constitutive Equations for Polymer Melts and Solutions, p. 171, Butterwoths, Boston, 1988.
  • [23] L. Jarecki, S. Blonski, A. Blim, and A. Zachara, “Modeling of pneumatic melt spinning processes”, J. Appl. Polymer Sci. 125, 4402-4415 (2012).
  • [24] A. Ziabicki, L. Jarecki, and A. Sorrentino, “The role of flowinduced crystallization in melt spinning”, e-Polymers, 072 (2004).
  • [25] J.S. Lee, D.M. Shin, H.W Jung, and J.C. Hyun, “Transient solutions of the dynamics in low-speed fiber spinning process accompanied by flow-induced crystallization”, J. Non-Newtonian Fluid Mech. 130, 110-116 (2005).
  • [26] A. Ziabicki, “The mechanisms of ‘neck-like’ deformation in high-speed melt spinning. 2. Effects of polymer crystallization”, J. Non-Newtonian Fluid Mech. 30, 157-168 (1988).
  • [27] D.W. van Krevelen, Properties of Polymers, pp. 86, 463, 469, Elsevier, Amsterdam, 2000.
  • [28] J.E. Mark, Physical Properties of Polymers, pp. 424, 670, AIP Press, New York, 1966.
  • [29] L. Jarecki, A. Ziabicki, and A. Blim, “Dynamics of hot-tube spinning from crystallizing polymer melts”, Comput. Theoret. Polymer Sci. 10, 63-72 (2000).
  • [30] R.J. Samuels, Structured Polymer Properties, p. 58, J. Wiley, NewYork, 1974.
  • [31] A. Ziabicki, “Theoretical analysis of oriented and non isothermal crystallization I. Phenomenological considerations. Isothermal crystallization accompanied by simultaneous orientation or disorientation”, Colloid Polymer Sci. 252, 207-221 (1974).
  • [32] A. Ziabicki, “Crystallization of polymers in variable external conditions”, Colloid Polymer Sci. 274, 209-217 (1996).
  • [33] G.C. Alfonso, M.P. Verdona, and A. Wasiak, “Crystallization kinetics of oriented poly(ethylene therephthalate) from the glassy state”, Polymer 19, 711-716 (1978).
  • [34] J.E. Spruiell, “Structure formation during melt spinning”, in Structure Formation in Polymeric Fibers, ed. D.R. Salem, Chap. 2, Munich, Cincinnati, 2000.
  • [35] K. Katayama and M. Yoon, “Polymer crystallization in melt spinning: mathematical simulation”, in High-Speed Fiber Spinning, eds. A. Ziabicki, H. Kawai, Chap. 8, Wiley, New York, 1985.
  • [36] R.M. Patel and J.E. Spruiell, “Crystallization kinetics during polymer processing - analysis of available approaches for process modeling”, Polymer Eng. Sci. 31, 730-738 (1991).
  • [37] R.M. Patel, J.H. Bheda, and J.E. Spruiell, “Dynamics and structure development during high-speed melt spinning of Nylon 6. II. Mathematical modeling”, J. Appl. Polymer Sci. 42, 1671-1682 (1991).
  • [38] A. Ziabicki, L. Jarecki, “The theory of molecular orientation and oriented crystallization in high-speed spinning”, in High- Speed Fiber Spinning, eds. A. Ziabicki, H. Kawai, Chap. 9, Wiley, New York, 1985.
  • [39] L. Jarecki, A. Ziabicki, Z. Lewandowski, and A. Blim, “Dynamics of air drawing in the melt blowing of nonwovens from isotactic polypropylene by computer modeling”, J. Appl. Polymer Sci. 119, 53-65 (2011).
  • [40] Y. Son, K.B. Migler, “Cavitation of polyethylene during extrusion processing instabilities”, J. Polymer Sci. B, Polymer Phys. 40, 2791-2799 (2002).
  • [41] A. Rozanski, A. Galeski, and M. Debowska, “Initiation of cavitation of polypropylene during tensile drawing”, Macromolecules 44, 20-28 (2011).
  • [42] L. Gerking and M. Stobik, “Nanoval splitspinning - from coarse to nano”, Chem. Fibers Int. 57, 210-211 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4ef485a-5f07-4455-b08b-05eb3c90f8d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.