PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Approximate generalized derivations close to derivations in Lie C*-algebras

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We apply a fixed point theorem to prove that there exists a unique derivation close to an approximately generalized derivation in Lie C*-algebras. Also, we prove the hyperstability of generalized derivations. In other words, we find some conditions under which an approximately generalized derivation becomes a derivation.
Wydawca
Rocznik
Strony
37--43
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
  • Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
Bibliografia
  • [1] L. Abellanas and L. M. Alonso, A general setting for Casimir invariants, J. Math. Phys. 16 (1975), 1580–1584.
  • [2] J. A. de Azcárraga and J. C. Pérez Bueno, higher-order simple Lie algebras, Comm. Math. Phys. 184 (1997), no. 3, 669–681.
  • [3] J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411–416.
  • [4] J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x + y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), 242–246.
  • [5] H. Bjar and O. A. Laudal, Deformation of Lie algebras and Lie algebras of deformations, Compos. Math. 75 (1990), no. 1, 69–111.
  • [6] M. Eshaghi Gordji, Nearly involutions on Banach algebras: A fixed point approach, Fixed Point Theory 14 (2013), no. 1, 117–124.
  • [7] A. Fialowski, Deformations of Lie algebras, Math. USSR Sb. 55 (1986), 467–473.
  • [8] R. Ger, Superstability is not natural, Rocz. Nauk.-Dydakt. Pr. Mat. 13 (1993), 109–123.
  • [9] R. Ger and P. Šemrl, The stability of the exponential equation, Proc. Amer. Math. Soc. 124 (1996), no. 3, 779–787.
  • [10] N. Jacobson, Lie Algebras, Dover, New York, 1979.
  • [11] T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists, Internat. J. Theoret. Phys. 32 (1993), no. 7, 1087–1103.
  • [12] G. F. Leger, Generalized derivations of Lie algebras, J. Algebra 228 (2000), no. 1, 165–203.
  • [13] M. de Montigny and J. Patera, Discrete and continuous graded contractions of Lie algebras and superalgebras, J. Phys. A. 24 (1991), no. 1, 525–547.
  • [14] C. Park, Lie *-homomorphisms between Lie C*-algebras and Lie *-derivations on Lie C*-algebras, J. Math. Anal. Appl. 293 (2004), no. 2, 419–434.
  • [15] C. Park, Homomorphisms between Lie JC*-algebras and Cauchy–Rassias stability of Lie JC*-algebra derivations, J. Lie Theory 15 (2005), 393–414.
  • [16] R. O. Popovych, V. M. Boyko, M. O. Nesterenko and M. W. Lutfullin, Realizations of real low-dimensional Lie algebras, J. Phys. A. 36 (2003), no. 26, 7337–7360.
  • [17] D. Rand, P. Winternitz and H. Zassenhaus, On the identi cation of a Lie algebra given by its structure constants. I. Direct decompositions, Levi decompositions, and nilradicals, Linear Algebra Appl. 109 (1988), no. 4, 197–246.
  • [18] T. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264–284.
  • [19] P. Šemrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118–122.
  • [20] L. Székelyhidi, On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math. Soc. 84 (1982), 95–96.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4ec6e16-02a5-461d-bcaf-cb8c96b69d11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.