Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The article proposes a methodology for determining the chemical quality criterion of porous layers synthesized on the surface of semiconductors, based on taking into account the chemical parameters of the surface that can affect the properties of nanostructures. Design/methodology/approach: The chemical quality criterion was evaluated in terms of stoichiometry, stability of structures over time, uniformity of distribution over the surface, and the presence of an oxide phase. As an example, a calculation is demonstrated for the por-InP/InP structure synthesized on a mono-InP surface. The results of calculating the chemical quality criterion were evaluated using the Harrington scale to rank samples by quality level. Findings: A chemical criterion for the quality of porous layers synthesized on the surface of semiconductors has been developed. This criterion contains a set of indicators sufficient for a comprehensive assessment of the surface condition and is universal in nature. The studies carried out make it possible to reasonably approach the determination of the modes of electrochemical processing of semiconductors and open up new perspectives in the construction of a model of self-organization of a porous structure. Research limitations/implications: The chemical quality criterion does not allow evaluating the obtained nanostructures in terms of geometric parameters. Therefore, in the future, there is a need to develop a morphological quality criterion and determine a methodology for assessing a generalized quality criterion for nanostructures synthesized on the surface of semiconductors, which may include economic, environmental, technological indicators, and the like. Practical implications: Study results are expedient from a practical point of view, since they make it possible to reasonably approach the determination of the modes of electrochemical processing of semiconductors, synthesize nanostructures with predetermined properties, and create standard samples of nanomaterial composition. Originality/value: Methodology for assessing the quality of porous semiconductors by a chemical criterion has been applied for the first time in engineering science. The article will be useful to engineers, who are engaged in the synthesis of nanostructures, researchers and scientists, as well as specialists in nanometrology.
Wydawca
Rocznik
Tom
Strony
18--26
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
- Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
- Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
- Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
- Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
- Benemérita Universidad Autónoma de Puebla, 4 Sur 104 Centro Histórico C.P. 72000 Puebla, Mexico
autor
- Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
- Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
autor
- Department of Physics, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
Bibliografia
- [1] A. Bateni, E. Erdem, W. Häßler, M. Somer, High-quality MgB2 nanocrystals synthesized by using modified amorphous nano-boron powders: Study of defect structures and superconductivity properties, AIP Advances 9/4 (2019) 045018. DOI: https://doi.org/10.1063/1.5089488
- [2] D. Pan, J.Y. Wang, W. Zhang, L. Zhu, X. Su, F. Fan, Y. Fu, S. Huang, D. Wei, L. Zhang, M. Sui, A. Yartsev, H. Xu, J. Zhao, Dimension Engineering of High-Quality InAs Nanostructures on a Wafer Scale, Nano Letters 19/3 (2019) 1632-1642. DOI: https://doi.org/10.1021/acs.nanolett.8b04561
- [3] M.J. Patete, P. Xiaohui, C. Koenigsmann, Y. Xu, B. Karnb, S.S. Wong, Viable methodologies for the synthesis of high-quality nanostructures, Green Chemistry 13/3 (2011) 482-519. DOI: https://doi.org/10.1039/C0GC00516A
- [4] Y.O. Suchikova, I.T. Bogdanov, S.S. Kovachov, Oxide crystals on the surface of porous indium phosphide, Archives of Materials Science and Engineering 98/2 (2019) 49-56. DOI: https://doi.org/10.5604/01.3001.0013.4606
- [5] A. Konovalenko, F. Pérez-Rodríguez, Nonlocal response of tunable photonic metamaterials with semi-conductor inclusions, Journal of the Optical Society of America B: Optical Physics 34/9 (2017) 2031-2040. DOI: https://doi.org/10.1364/JOSAB.34.002031
- [6] E. Ma, T. Zhu, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals, Materials Today 20/6 (2017) 323-331. DOI: https://doi.org/10.1016/j.mattod.2017.02.003
- [7] C. Tongjai, H.A. Murdoch, C.A. Schuh, Design of stable nanocrystalline alloys, Science 337/6097 (2012) 951-954. DOI: https://doi.org/10.1126/science.1224737
- [8] Y. Havrylenko, J.I. Cortez, Y. Kholodniak, H. Alieksieieva, G.T. Garcia, Modelling of surfaces of engineering products on the basis of array of points, Tehnicki Vjesnik 27/6 (2020) 2034-2043. DOI: https://doi.org/10.17559/TV-20190720081227
- [9] T.K. Sliusariak, Y.M. Andriichuk, S.А. Vojtovych, M.А. Zhukovskyi, Y.B. Khalavka, Synthesis of CdSe/ZnS nanoparticles with multiple photolumines-cence, Physics and Chemistry of Solid State 21/1 (2020) 105-112. DOI: https://doi.org/10.15330/pcss.21.1.105-112
- [10] V. Beloshapka, O. Melnyk, V. Soolshenko, Nickel nanowires based on icosahedral structure, Metallofizika i Noveishie Tekhnologii 41/5 (2019) 673-682. DOI: https://doi.org/10.15407/mfint.41.05.0673
- [11] Y. Suchikova, I. Bogdanov, S. Kovachov, D. Kamensky, V. Myroshnychenko, N. Panova, Optimal ranges determination of morphological parameters of nanopatterned semiconductors quality for solar cells, Archives of Materials Science and Engineering 101/1 (2020) 15-24. DOI: https://doi.org/10.5604/01.3001.0013.9502
- [12] A. Popov, M. Monge, R. González, Y. Chen, E. Kotomin, Dynamics of F-center annihilation in thermochemically reduced MgO single crystals, Solid State Communications 118/3 (2001) 163-167. DOI: https://doi.org/10.1016/S0038-1098(01)00062-X
- [13] V. Kuzovkov, A. Popov, E. Kotomin, R. González, Y. Chen, Kinetics of nanocavity formation based on f-center aggregation in thermochemically reduced mgo single crystals, Physical Review B - Condensed Matter and Materials Physics 64/6 (2001) 064102. DOI: https://doi.org/10.1103/PhysRevB.64.064102
- [14] Nanotechnology Products Database (NPD). Available from: http://product.statnano.com
- [15] S. Vambol, I. Bogdanov, V. Vambol, Ya. Suchikova, S. Kovachov, Correlation between technological factors of synthesis of por-GaP and its acquired properties, Nanosistemi, Nanomateriali, Nano-tehnologii 16/4 (2018) 657-670.
- [16] А. Benor, New insights into the oxidation rate and formation of porous structures on silicon, Materials Science and Engineering: B 228 (2018) 183-189. DOI: https://doi.org/10.1016/j.mseb.2017.11.015
- [17] I.V. Rogozin, M.B. Kotlyarevsky, Characteristics of nitrogen-doped p-ZnO thin films and ZnO/ZnSe p-n heterojunctions grown on a ZnSe substrate, Semicon-ductor Science and Technology 23/8 (2008) 085008. DOI: https://doi.org/10.1088/0268-1242/23/8/085008
- [18] D. Sahar, S. Ghasemi, A. Ashkarran, Electrospun CuO-ZnO nanohybrid: Tuning the nanostructure for improved amperometric detection of hydrogen peroxide as a non-enzymatic sensor, Journal of colloid and interface science 550 (2019) 180-189. DOI: https://doi.org/10.1016/j.jcis.2019.04.091
- [19] Y. Suchikova, Provision of environmental safety through the use of porous semiconductors for solar energy sector, Eastern-European Journal of Eenterprise Technologies 6/5(84) (2016) 26-33 DOI: https://doi.org/10.15587/1729-4061.2016.85848
- [20] Y.Y. Song, K. You, J. Zhao, D. Huang, Y. Chen, C. Xing, H. Zhang, A nano-lateral heterojunction of selenium-coated tellurium for infrared-band soliton fiber lasers, Nanoscale 12/28 (2020) 15252-15260. DOI: https://doi.org/10.1039/D0NR02548H
- [21] E. Monaico, I. Tiginyanu, O. Volciuc, T. Mehrtens, A. Rosenauer, J. Gutowski, K. Nielsch, Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates, Electrochemistry Communications 47 (2014) 29-32. DOI: https://doi.org/10.1016/j.elecom.2014.07.015
- [22] N.N. Tretyakov, I.Ya. Mittova, B.V. Sladkopevtsev, B.L. Agapov, D.I. Pelipenko, S.V. Mironenko, Surface morphology, composition, and structure of nanofilms grown on InP in the presence of V2O5, Inorganic Materials 51/7 (2015) 655-660. DOI: https://doi.org/10.1134/S002016851507016X
- [23] S. Behera, P. Fry, H. Francis, C.Y. Jin, M. Hopkinson, Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications, Scientific Reports 10/1 (2020) 6269. DOI: https://doi.org/10.1038/s41598-020-63327-7
- [24] N. Wang, X. Yuan, X. Zhang, Q. Gao, B. Zhao, L. Li, M. Lockrey, H. Tan, C. Jagadish, P. Caroff, Shape engineering of InP nanostructures by selective area epitaxy, ACS Nano 13/6 (2019) 7261-7269. DOI: https://doi.org/10.1021/acsnano.9b02985
- [25] T. Wang, F. Cao, X. Ji, Q. Zhang, Study on tower-like GaN nanostructure: Growth, optical and fast UV sensing properties, Superlattices and Microstructures 134 (2019) 106233. DOI: https://doi.org/10.1016/j.spmi.2019.106233
- [26] Y.A. Sychikova, V.V. Kidalov, G.A. Sukach, Dependence of the threshold voltage in indium-phosphide pore formation on the electrolyte composition, Journal of Surface Investigation 7/4 (2013) 626-630. DOI: https://doi.org/10.1134/S1027451013030130
- [27] J. Theerthagiri, S. Salla, R.A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, H.S. Kim, A review on ZnO nanostructured materials: energy, environmental and biological applications, Nanotechnology 30/39 (2019) 392001. DOI: https://doi.org/10.1088/1361- 6528/ab268a
- [28] G.M. Lohar, H.D. Dhaygude, R.A. Patil, Y.R. Ma, V.J. Fulari, Studies of properties of Fe2+ doped ZnSe nano-needles for photoelectrochemical cell application, Journal of Materials Science: Materials in Electronics 26/11 (2015) 8904-8914. DOI: https://doi.org/10.1007/s10854-015-3572-4
- [29] N.P. Wasekar, S.M. Latha, M. Ramakrishna, D. S. Rao, G. Sundararajan, Pulsed electrodeposition and mechanical properties of Ni-W/SiC nano-composite coatings, Materials and Design 112 (2016) 140-150. DOI: https://doi.org/10.1016/j.matdes.2016.09.070
- [30] Z. Li, A. Shahsavar, A.A. Al-Rashed, P. Talebizadehsardari, Effect of porous medium and nanoparticles presences in a counter-current triple-tube composite porous/nano-PCM system, Applied Thermal Engineering 167 (2020) 114777. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114777
- [31] G. Korotcenkov, V. Brinzari, B.K. Cho, Thin Film SnO2 and In2O3 Ozone Sensor Design: The Film Parameters Selection, Applied Mechanics and Materials 799 (2015) 910-914. DOI: https://doi.org/10.4028/www.scientific.net/AMM.799- 800.910
- [32] J.-H. Jo, J.-H. Kim, S.-H. Lee, H.S. Jang, D. S. Jang, J.C. Lee, K.U. Park, Y. Choi, C. Ha, H. Yang, Photostability enhancement of InP/ZnS quantum dots enabled by In2O3 overcoating, Journal of Alloys and Compounds 647 (2015) 6-13. DOI: https://doi.org/10.1016/j.jallcom.2015.05.245
- [33] T. Tharsika, A.S.M.A. Haseeb, S.A. Akbar, M.F.M. Sabri, Co-synthesis of ZnO/SnO2 mixed nanowires via a single-step carbothermal reduction method, Ceramics International 40/3 (2014) 5039-5042. DOI: https://doi.org/10.1016/j.ceramint.2013.08.142
- [34] H. Hu, S. Wang, X. Feng, M. Pauly, G. Decher, Y. Long, In-plane aligned assemblies of 1D-nanoobjects: recent approaches and applications, Chemical Society Reviews 49/2 (2020) 509-553. DOI: https://doi.org/10.1039/C9CS00382G
- [35] S.P. Murzin, N.L. Kazanskiy, Arrays Formation of Zinc Oxide Nano-Objects with Varying Morphology for Sensor Applications, Sensors 20/19 (2020) 5575. https://doi.org/10.3390/s20195575
- [36] N. Busatto, J.L. Keddie, P.J. Roth, Sphere-to-worm morphological transitions and size changes through thiol–para-fluoro core modification of PISA-made nano-objects, Polymer Chemistry 11/3 (2020) 704-711. DOI: https://doi.org/10.1039/C9PY01585J
- [37] A.I. Popov, L. Shirmane, V. Pankratov, G. Chikvaidze, J. Zimmermann, Comparative study of the luminescence properties of macro- and nanocrystalline MgO using synchrotron radiation, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 310 (2013) 23- 26. DOI: https://doi.org/10.1016/j.nimb.2013.05.017
- [38] S.A. Chernov, L. Trinkler, A.I. Popov, Photo- and thermo-stimulated luminescence of CsI-Tl crystal after UV light irradiation at 80 K, Radiation Effects and Defects in Solids 143/4 (1998) 345-355. DOI: https://doi.org/10.1080/10420159808214037
- [39] P. Wang, A.V. Krasavin, F.N. Viscomi, A.M. Adawi, J.S.G. Bouillard, L. Zhang, D.J. Roth, L. Tong, A.V. Zayats, Metaparticles: Dressing Nano‐Objects with a Hyperbolic Coating, Laser and Photonics Reviews 12/11 (2018) 1800179. DOI: https://doi.org/10.1002/lpor.201800179
- [40] H. Klym, A. Ingram, O. Shpotyuk, O. Hotra, A. Popov, Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics, Low Temperature Physics 42/7 (2016) 764- 769. DOI: https://doi.org/10.1063/1.4959021
- [41] Y.O. Suchikova, Sulfide Passivation of Indium Phosphide Porous Surfaces, Journal of Nano- and Electronic Physics 9/1 (2017) 01006. DOI: https://doi.org/10.21272/jnep.9(1).01006
- [42] H.F. Yang, L.Z. Tang, Q. Sun, L. Sun, Z.H. Li, S.X. Ren, Ferromagnetism in High-Surface-Area ZnO Nanosheets Prepared by a Template-Assisted Hydrothermal Method, Chinese Physics Letters 35/6 (2018) 067501. DOI: https://doi.org/10.1088/0256- 307X/35/6/067501
- [43] J.A. Suchikova, Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide, Journal of Nano- and Electronic Physics 7/3 (2015) 03017.
- [44] V. Mezhuyev, V. Lavrik, H. Alieksieieva, Meta-modelling architecture for computer aided design of mechanical systems, Proceedings of the 2nd International Conference on Computer Science and Software Engineering “CSSE 2019”, Xi'an, China, 2019, 132-136. DOI: https://doi.org/10.1145/3339363.3339380
- [45] H. Trautmann, C. Weihs, On the distribution of the desirability index using Harrington’s desirability function, Metrika 63/2 (2006) 207-213. DOI: https://doi.org/10.1007/s00184-005-0012-0
- [46] Y.A. Suchikova, V.V. Kidalov, G.A. Sukach, Influence of the carrier concentration of indium phosphide on the porous layer formation, Journal of Nano- and Electronic Physics 2/4 (2010) 75-81.
- [47] Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, X. Peng, Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electrolumines-cence, Journal of the American Chemical Society 141/16 (2019) 6448-6452. DOI: https://doi.org/10.1021/jacs.8b12908
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4e94445-4687-4f38-a26b-cc50483af0b1