Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
The basic properties and applications of GaN HEMT transistors
Języki publikacji
Abstrakty
Omówiono podstawowe właściwości i zastosowania tranzystorów HEMT wykonywanych na bazie azotku galu (GaN). Przedyskutowano specyfikę struktury heterozłączowej oraz główne cechy fizyczne azotku galu. Szczególną uwagę poświęcono mechanizmowi tworzenia dwuwymiarowego gazu elektronowego (2DEG) i jego znaczeniu dla właściwości tranzystorów. Przedstawiono niektóre efekty pasożytnicze występujące w tranzystorach GaN HEMT, znane jako „current collapse” oraz „DC-RF dispersion”. Omówiono także najważniejsze obecnie zastosowania tranzystorów GaN HEMT – w układach mikrofalowych oraz energoelektronice.
The basic properties and applications of GaN HEMT transistors are reviewed. Fundamentals feature of gallium nitride (GaN) and specific properties of heterojunction are discussed with the special attention paid to the mechanism of two-dimensional electron gas (2DEG) formation, and resulting high mobility feature. The parasitic effects known as current collapse and DC-RF dispersion in GaN HEMT are discussed. The most important applications in microwave circuits and power electronics are described.
Wydawca
Czasopismo
Rocznik
Tom
Strony
65--73
Opis fizyczny
Bibliogr. 87 poz., rys., tab.
Twórcy
autor
- Politechnika Koszalińska, Wydział Elektroniki i Informatyki, ul. Śniadeckich 2, 75-453 Koszalin
autor
- Politechnika Warszawska, Instytut Radioelektroniki, ul. Nowowiejska 15/19, 00-665 Warszawa
Bibliografia
- [1] Meneghini M. et al., Investigation of Trapping and Hot-Electron Effects in GaN HEMTs by Means of a Combined Electrooptical Method, IEEE Trans. on Electron Devices, vol. 58, N. 9, Sept. 2011, 2997-3003
- [2] Nakkala P. et al., Pulsed Characterisation of Trapping Dynamics in AlGaN/GaN HEMTs, Electronic Letters, 24thOctober 2013, Vol. 49, N. 22, 1406-1407
- [3] Faramehr S., Kalna K. and Igić P., Simulation of Current Collapse in the 0.25 µm Gate Length Al0.28Ga0.72N/GaN HEMT, Proc. 28th Intern. Conf. on Microelectronics, Niš, Serbia, 13-16 May 2012, 233-236
- [4] Tartarin J.G. et al., I-LDTS, Electrical Lag and Low Frequency Noise Measurements of Trapping Effects in AlGaN/GaN HEMT for Reliability Studies, Proc. of the European Microwave Integrated Circuits Conference, Manchester, 10-11 Oct. 2011, 438-441
- [5] Fathallah O. et al., Parasitic Effects and Traps in AlGaN/GaN HEMT on Sapphire Substrate, The European Physical J. Applied Physics, Vol. 51, 10304, 2010
- [6] Mishra U.K., Parikh P. and Wu Y., AlGaN/GaN HEMTs - An Overview of Device Operation and Applications, Proc. IEEE,vol. 90, N. 6, June 2002, 1022-1031
- [7] Borges R., Gallium Nitride Electronic Devices for High-Power Wireless Applications, RF Semiconductors, Sept. 2001, 72-82
- [8] Wang X.D., Hu W.D., Chen X.S. and Lu W., The Study of Self-Heating and Hot-Electron Effects for AlGaN/GaN Double-Channel HEMTs, IEEE Trans. on El. Dev., vol. 59, NO. 5, May 2012, 1393-1401
- [9] Gassoumi M. et al., Evidence of Surface States for AlGaN/GaN/SiC HEMTs Passivated Si3N4 by CLDTS, Fizika i Tiechnika Połuprowodnikow, 2012, Tom 46, Wyp. 3, 396-399
- [10] Jin D. and del Alamo J.A., Mechanisms Responsible for Dynamic ON-Resistance in GaN High-Voltage HEMT’s, Proc. of the 2012 24th Intern. Symp. on Power Semiconductor Devices and IC’s, June 3-7, 2012, Bruges, Belgium, 333-336
- [11] Lee B.H. et al., High RF Performance Improvement Using Surface Passivation Technique of AlGaN/GaN HEMT at K-band Application, Electronic Letters, 1st August 2013, vol. 49, N. 16
- [12] Kaushik J.K. et al., On the Origin of Kink Effect in Current-Voltage Characteristics of AlGaN/GaN High Electron Mobility Transistors, IEEE Trans. on Electron Devices, Vol. 60, N. 10, Oct. 2013, 3351-3357
- [13] Angelov I. et al., On the Large-Signal modeling of AlGaN/GaN HEMTs and SiC MESFETs, 13th GaAs Symposium – Paris 2005, 309-312
- [14] Lu B. and Palacios T., High Breakdown (> 1500 V)) AlGaN/GaN HEMTs by Substrate-Transfer Technology, IEEE Electron Device Letters, Vol. 31, N. 9, Sept. 2010, 951-953
- [15] Lin Y.S. et al., Square-Gate AlGaN/GaN HEMT with Improved Trap-Related Characteristics, IEEE Tr. on Electron Dev., Vol. 56, N. 12, Dec. 2009, 3207-3210.
- [16] Cho J. et al., Improved Thermal Interfaces of GaN-Diamond Composite Substrates for HEMT Applications, IEEE Trans. on Comp. Pack. And Manuf. Technology, Vol.3, 2013, 79-84
- [17] Mosbahi H. et al., Electrical Characterization of AlGaN/GaN HEMTs on Si Substrate, Journal of Electron Devices, vol.15, 2012, 1225-1231
- [18] Miccoli C. et al., Trapping and Thermal Effects Analysis for AlGaN/GaN HEMTs by Means of TCAD Simulations, IEEE Electron Device Letters, Vol. 34, N. 9, Sept. 2013, 1121-1381
- [19] Mimouni A. et al., Gate Leakage Current in GaN HEMT’s: A Degradation Modeling Approach, Electrical and Electronic Engineering, 2 (6), 2012, 397-402
- [20] Yu C.H., Luo O.Z. and Liu P.S., Donor-Like Surface Traps on Two-Dimensional Electron Gas and Current Collapse of AlGaN/GaN HEMTs, The Scientific World Journal, Vol. 2013, Article ID 931980
- [21] Doo S.J. et al., Effective Suppression of IV Knee Walk-Out in AlGaN/GaN HEMTs for Pulsed-IV Pulsed-RF With a Large Signal Network Analyzer, IEEE Microwave and Wireless Components Letters, Vol. 16, N. 12, Dec. 2006, 681-683
- [22] Charbonniaud C. et al., Electrothermal and Trapping Effects Characterisation of AlGaN/GaN HEMTs, 11-th GaAs Symposium – Munich, 2003, 201-204
- [23] Mitrofanov O., Manfra M., Mechanisms of Gate Lag in GaN/AlGaN/GaN High Electron Mobility Transistors, Superlatices and Microstructures 34 (2003) 33-53
- [24] Tapajna M. et al., Non-Arrhenius Degradation of AlGaN/GaN HEMTs Grown on Bulk GaN Substrates, IEEE Electron Device Letters, Vol. 33, N. 8, Aug. 2012, 1126-1128
- [25] Wakejima A. et al., Evaluation of Electron Trapping Speed of AlGaN/GaN HEMT With Real-Time Electroluminescence and Pulsed I-V Measurements, IEEE Trans. on Electron Devices, Vol. 60, N. 10, Oct. 2013, 3183-3189
- [26] Mitrofanov O. and Manfra M.J., Charge Trapping on Defects in AlGaN/GaN Field Effect Transistors, Proc. of SPIE, Vol. 6473, 2007
- [27] Meneghesso G. et al., Trapping Phenomena in AlGaN/GaN HEMTs: A Study Based on Pulsed and Transient Measurements, Semiconductor Sci. Technol., Vol. 28, 2013, 074021
- [28] Sönmez E. et al., Gallium Nitride for 600V Operation, Power Electronics Europe, Is. 4, 2011, 25-28
- [29] Santarelli A. et al. Nonlinear Thermal Resistance Characterization for Compact Electrothermal GaN HEMT Modelling, Proc. 5-th Europ. Microwave Integrated Circuits Conf. 27–28 Sept. 2010, Paris France, 82-85
- [30] Chaibi M. et al., Nonlinear Modeling of Trapping and Thermal Effects on GaAs and GaN MESFET/HEMT Devices, Progress in Electromagnetics Research, Vol. 124, 163-186, 2012
- [31] Chen H. et al., Charge Trapping at Surface in GaN HEMTs, CS Mantech Conference, Apr. 14 – 17, 2008, Chicago, USA
- [32] Zhao Z. et al., Impact of Surface Traps on the Breakdown Voltage of Passivated AlGaN/GaN HEMTs Under High-Field Stress, Micro & Nano Letters, Vol. 7, Iss. 11, 2012, 1140-1142
- [33] Uren M.J., Moroke J. and Kuball M., Buffer Design to Minimize Current Collapse in GaN/AlGaN HFETs, IEEE Trans. on Electron Devices, Vol. 59, N. 12, Dec. 2012, 3327-3333
- [34] Charfeddine M. et al., Electrical Characterization of Traps in AlGaN/GaN FAT-HEMT on Silicon Substrate by C-V and DLTS Measurements, Journal of Modern Physics, 2011, 2, 1229-1234
- [35] Hasan M. et al., Current Collapse Suppression by Gate Field-Plate in AlGaN/GaN HEMTS, IEEE Electron Device Letters, Vol. 34, N. 11, Nov. 2013, 1379-1381
- [36] Mosbahi H. et al., Electron Traps Studied in AlGaN/GaN HEMT on Si Substrate Using Capacitance Deep Level Transient Spectroscopy, J. of Optoelectronics and Advanced Materials,Vol.11, Nov. 2010, 2190-2193
- [37] Tirado J.M., Sanchez-Rojas J.L. and Izpura J.I., Trapping Effects in the Transient Response of AlGaN/GaN HEMT Devices, A Journal for Process and Device Engineers, vol. 17, N. 3, Aug. 2007, 1-8
- [38] Binari S.C., Klein P.B. and Kazior T.E., Trapping Effects in GaN and SiC Microwave FETs, Proc. IEEE, vol. 90, N. 6, June 2002, 1048-1058
- [39] Dumka D.C. and Saunier P., GaN on Si HEMT with 65% power added efficiency at 10 GHz, Electronics Letters, 24th June 2010, vol. 46, No. 13, 946-947
- [40] Jin D., del Alamo J., Methodology for the study of Dynamic ON-Resistance in High-Voltage GaN Field-Effect Transistors, IEEE Trans. on Electron Devices, Vol. 60, N. 10, Oct. 2013, 3190-3196
- [41] Young C.D., et al., Pulsed Id-Vg Methodology and Its pplication to Electron Trapping Characterization and Defect Density Profiling, IEEE Tr. on Electron Dev., Vol. 56, N. 6, June 2009, 1322-1329
- [42] Bertulozza F. et al., Lumped Element Thermal Modeling of GaN-Based HEMTs, Microwave Symposium Digest, IEEE MTT’09, 7-12 June, 2009, 973-976
- [43] Wakejima A. et al., Frequency Dispersion of Drain Conductance in AlGaN/GaN HEMT Evaluated Using Sinusoidal Wave Signal Input, IEEE Compound Semiconductor Integrated Circuit Symp., Monterey, 13-16 Oct. 2013, 1-4
- [44] Caesar M. et al., Generation of Traps in AlGaN/GaN HEMT During RF and DC Stress Test, IEEE Intern. Reliability Physics Symp., Anaheim, 15-19 April 2012, pp. CD. 6.1-CD.6.5
- [45] Bisi D. et al., Deep-Level Characterization in GaN HEMTs – Part I: Advantages and Limitations of Drain Current Transient Measurements, IEEE Trans. on Electron Devices, Vol. 60, N. 10, Oct. 2013, 3166-3175
- [46] Tan W.S. et al., High Temperature Performance of AlGaN/GaN HEMT’s on Si Substrates, Solid-State Electronics, 50 (2006) 511-513
- [47] Dahmani S., Mengistu E.S. and Kompa G., Thermal Model Extraction of GaN HEMTs for Large-Signal Modeling, 3-rd European Microwave Integrated Circuits Conference, 2008, 226-229
- [48] Berroth M. et al., Nonlinear GaN HEMT Modeling Including Thermal Effects, 2-nd Joint Symposium on Opto- and Microelectronic Devices and Circuits, Stuttgart, March 10 – 16, 2002, 236-239
- [49] Taube A., Sochacki M., Szmidt J., Symulacje i Modelowanie Tranzystorów HEMT AlGaN/GaN – Wpływ Przewodności Cieplnej Podłoża, Elektronika, Nr 9/2012, 34-37
- [50] Taube A., Sochacki M., Szmidt J., Symulacje i Modelowanie Zaawansowanych Struktur Tranzystorów HEMT AlGaN/GaN, Elektronika, Nr 9/2012, 38-41
- [51] Albahrani S.A. and Parker A.E., Characterization of Trapping and Thermal Dispersion in GaN HEMTs, IEEE MTT-S Intern. Microwave Symp., 23-28 May 2010, 413-416
- [52] Kikkawa T. et al., Trap Analysis of GaN-Insulated-Gate-HEMT for High Reliability, CS MANTECH Conference, May 14-17, 2007, Austin, Texas, 91-94
- [53] Kumar N. et al., Electrostatic Mechanisms Responsible for Device Degradation in AlGaN/GaN HEMTs, Intern. J. of Wireless Communication and Networking Technologies, Vol. 2, N. 3, April 2013, 28-31
- [54] Liu Y., Reese E., AlGaN/GaN HEMT Large Signal Nonlinear Compact Model Accounting for Thermal Effects and Trapping Dispersion, IEEE Compound Semiconductor Integrated Circuit Symposium, Monterey, 13-16 Oct. 2013, 1-5
- [55] Lagger P. et al., Very Fasr Dynamics of Threshold Voltage Drifts in GaN-Based MIS-HEMTs, IEEE Electron Device Letters, Vol. 34, N. 9, Sept. 2013, 1112-1114
- [56] Defrance N. et al., Thermal resistance of AlGaN/GaN HEMTs on SopSiC composite substrate, Electronics Letters, 24th June 2010, vol. 46, No. 13, 949-950
- [57] Soci F., Chini A., Influence of Device Self-Heating on Trap Activation Energy Extraction, IEEE International Reliability Physics Symposium, 14-18 April 2013, 3C.6.1-3C.6.6
- [58] Albahrani S., Rathmel J.G. and Parker A.E., Characterizing Drain Current Dispersion in GaN HEMT’s with a New Trap Model, Proc. of 39th European Microwave Conference, Rome, 30 Sept. – 1 Oct. 2009, 1692-1695
- [59] Rathmel J., Parker A.E., Circuit Implementation of a Theoretical Model of Trap Centers in GaAs and GaN Devices, Proc. of SPIE, Vol. 6798 (2007)
- [60] Rathmell J.G., Parker A.E., Characterization and Modeling of Substrate Trapping in HEMTs, 2-nd European Microwave Integrated Circuits Conference, 2007, 64-67
- [61] Faqir M. et al., Characterization and Analysis of Trap-Related Effects in AlGaN/GaN HEMT, Microelectronics Reliability, 47 (2007) 1639-1642
- [62] Zhang W. et al., Influence of the Interface Acceptor-Like Traps on the Transient Response of AlGaN/GaN HEMTs, IEEE Electron Device Letters, Vol. 34, N. 1, Jan. 2013, 45-47
- [63] Jarndal A., Bunz B. and Kompa G., Accurate Large-Signal Modeling of AlGaN-GaN HEMT Including Trapping and Self-Heating Induced Dispersion, Proc. 18th Int. Symposium on Power Semiconductor Devices & IC’s, June 4–8, 2006, Naples, Italy
- [64] Oprins H. et al., Thermal Modeling of Multi-Finger AlGaN/GaN HEMT, Therminic Conf., Belgirate, Italy, Sept. 28–30, 2005
- [65] Anderson T.J. et al., Profiling the Temperature Distribution in AlGaN/GaN HEMT with Nanocrystalline Diamond Heat Spreading Layers, CS MANTECH Conference, Apr. 23 – 26, 2012, Boston, USA
- [66] Bernardoni M., Delmonte N., Menozzi R., Empirical and Physical Modeling of Self-Heating in Power AlGaN/GaN HEMT, CS MANTECH Conference, Apr. 23 – 26, 2012, Boston, USA
- [67] Nochetto H.C., Jankowski N.R., A. Bar-Cohen, The Impact of GaN/Substrate Thermal Boundary Resistance on a HEMT Device, Proc. ASME IMECE 2011, Nov. 11 -17, 2011, Denver, USA
- [68] Vitanov S. et al., High-Temperature Modeling of AlGaN/GaN HEMTs, Solid-State Electronics, vol.54 (2010), 1105-1112
- [69] Stuchlikova L. et al., Electrical Characterization of the InAlN/GaN Heterostructures by Capacitance Methods, The 9thIntern. Conf. on Advanced Semiconductor Devices and Microsystems, Nov. 11-15, 2012, Smolenice, 51-54
- [70] Joh J. and del Alamo J.A., Impact of Electrical Degradation on Trapping Characteristics of GaN High Electron Mobility Transistors, IEEE Intern. Electron Devices Meeting, San Francisco, 15-17 Dec. 2008, 1-4
- [71] Joh J. and del Alamo J.A., A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors, IEEE Trans. on Electron Devices, vol. 58, N. 1, Jan. 2011, 132-140
- [72] Fieger M., Technology and Characterization of GaN–based Heterostructure Field Effect Transistors (HFETs), PhD Dissertation, Technischen Hochschule Aachen, 2010
- [73] Macfarlane D.J., Design and fabrication of AlGaN/GaN HEMTs with high breakdown voltages, PhD Dissertation, School of Engineering, University of Glasgow, 2014
- [74] Dahmani S., Large-Size AlGaN/GaN HEMT Large-Signal Electrothermal Characterization and Modeling for Wireless Digital Communications, PhD Dissertation, University of Kassel, 2011
- [75] Lenka T.R. and Panda A.K., Effect of Structural parameters on 2DEG density and C-V characteristics of AlxGa1-xN/AlN/GaN–based HEMT, Indian Journal of Pure and Applied Physics, vol. 49, June 2011, 416-422
- [76] Kalavagunta A., Understanding the Impact of Bulk Traps on GaN HEMT DC and RF Characteristics, PhD Dissertation, Vanderbilt University, 2009
- [77] Fornetti F., Characterisation and Performance Optimisation of GaN HEMTs and Amplifiers for Radar Applications, PhD Dissertation, University of Bristol, 2010
- [78] Jarndal A., Bunz B. and Kompa G., Accurate Large-Signal Modeling of AlGaN-GaN HEMT Including Trapping and Self-Heating Induced Dispersion, Proc. of the 18th Int. Symp. on Power Semiconductor Devices & IC’s June 4-8, 2006 Naples, Italy
- [79] Jardel O. et al., A new nonlinear HEMT model for AlGaN/GaN switch applications, Proc. of the 4th European Microwave Integrated Circuits Conference, Sept. 2009, Roma, Italy, 73-76
- [80] Zhang N., High voltage GaN HEMTs with low on-resistance for switching applications, PhD. Dissertation, University of California, Santa Barbara, 2002
- [81] Meyer D.J., Surface Passivation Studies of AlGaN/GaN High Electron Mobility Transistors, PhD. Dissertation, The Pennsylvania State University, 2008
- [82] Visalli D., Optimization of GaN-on-Si HEMTs for High Voltage Applications, PhD. Dissertation, Katholieke Universiteit Leuven, 2011
- [83] Perez J.A.F., Thermal Study of a GaN-Based HEMT, PhD. Dissertation, University of Notre Dame Indiana, 2012
- [84] Paskova T., Hanser D.A. and Evans K.R., GaN Substrates for III-Nitride Devices, Proc. of IEEE, vol. 98, N. 7, July 2010, 1324-1338
- [85] Hashimoto T., Letts E. and Hoff S., Current Status and Future Prospects of Ammonothermal Bulk GaN Growth, Sensors and Materials, vol. 25, N.3 (2013), 155-164
- [86] Komiak J.J., GaN HEMT, IEEE Microwave Magazin, April 2015, 97-105
- [87] GaN Transistors for Efficient Power Conversion, WILEY, 2015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4e42d31-2d0b-4b71-a7ff-00f0e15951ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.