Identyfikatory
Warianty tytułu
Tests of the superconducting magnets during manufacturing process and operation
Języki publikacji
Abstrakty
Elektromagnesy nadprzewodnikowe są urządzeniami, które wytwarzają silne pole magnetyczne przy niewielkich stratach energii. Wykorzystywane są w nowoczesnych urządzeniach takich jak akcelerator cząstek LHC, tomografy MRI, separatory magnetyczne oraz zasobniki energii SMES. Elektromagnesy nadprzewodnikowe projektuje się z małym marginesem bezpieczeństwa ze względu na wysokie koszty nadprzewodnika. Elektromagnes nadprzewodnikowy wymaga specjalnej konstrukcji ze względu na duże siły działające na uzwojenia i karkas oraz konieczność stosowania do jego budowy specjalnych materiałów do pracy w niskich temperaturach. Niewielkie przemieszczanie się uzwojeń w wyniku działania sił podczas pracy powoduje wydzielanie się ciepła i może doprowadzić do quenchu – niekontrolowanego przejścia nadprzewodnika ze stanu nadprzewodzącego do stanu rezystywnego. Awaria elektromagnesu nadprzewodnikowego związana jest z jego długotrwałą i kosztowną naprawą, dlatego nieodzowne jest testowanie elektromagnesów nadprzewodnikowych podczas ich wytwarzania i eksploatacji. W pracy omówiono główne zagadnienia dotyczące budowy elektromagnesów nadprzewodnikowych, chłodzenia i testowania. Przedstawiono urządzenia i aparaturę do przeprowadzenia testów oraz metody i procedury badań elektromagnesów nadprzewodnikowych LTS. W pracy opisano zabezpieczenia elektromagnesów nadprzewodnikowych LTS oraz sposoby ich testowania. Przedstawiono także metody lokalizacji zwarć i usterek oraz badanie i monitorowanie pracy zainstalowanych elektromagnesów nadprzewodnikowych. Przeprowadzono badania elektromagnesu HTS zbudowanego z nadprzewodnika wysokotemperaturowego. Elektromagnesy HTS w ostatnich latach są jeszcze w fazie studiów projektowych i konstrukcyjnych, a ich technologia wymaga intensywnych badań. Opracowanie metody testowania elektromagnesu nadprzewodnikowego HTS oraz programu w środowisku LabView do sterowania urządzeniami wchodzącymi w skład stanowiska testowego, rejestracji i analizy sygnałów, umożliwiło przeprowadzenie badań zgodnie z opracowaną metodą testowania. Wyznaczono parametry elektromagnesu nadprzewodnikowego oraz obszar jego stabilnej pracy w szerokim zakresie temperatur kriogenicznych. Uzyskane wyniki badań stanowią wkład w techniki pomiarowe w temperaturach kriogenicznych, niezbędne podczas projektowania elektromagnesów nadprzewodnikowych.
Superconducting magnets produce high magnetic field with low energy losses. They are used in state-of-the-art devices such as the LHC accelerator, MRI tomography, magnetic separators or SMES devices. The superconducting magnets are designed with low margin due to high costs of the superconductor used. The superconducting magnet requires a special design due to the large forces acting on its coil and bobbin. It also requires special materials to work in low temperatures. A minor movement of the winding, which is as a result of forces during operation, causes a release of heat and may lead to a quench. Failure of the superconducting magnet leads to long and costly repairs, so it is essential to test superconducting magnets during their manufacture process and operation. This paper discusses the main issues concerning the construction of superconducting magnets, their cooling as well as testing. The author presents the tests setup and measurements equipment for SC magnet testing, and testing methods and procedures for LTS superconducting magnets. He presents protection systems of superconducting magnets and testing methods of the protection systems, and also investigates methods to locate faults and defects in superconducting magnets, testing and monitoring of the installed superconducting magnets. The tests of a superconducting HTS magnet made of hightemperature superconductors were performed. The HTS magnets are still in the development stage at this time, and their technology requires intensive research. The development of a method for testing HTS superconducting magnets, together with software written in LabView environment to control devices on the test stand and for data acquisition and signals analysis, enabled the performance of tests in accordance with the elaborated method and determination of parameters of superconducting magnets, as well as the area of its stable operation over a wide range of cryogenic temperatures. The results represent a contribution to the measurement techniques at cryogenic temperatures and to the issue of the protection and stability of the superconducting coils, necessary in the design of superconducting magnets.
Czasopismo
Rocznik
Tom
Strony
11--150
Opis fizyczny
Bibliogr. 163 poz., rys., tab., zdj.
Twórcy
autor
- Pracownia Technologii Nadprzewodnikowych w Lublinie, w Zakład Wielkich Mocy Instytutu Elektrotechniki
Bibliografia
- 1. Ali M.H., Wu B., Dougal R.A.: An Overview of SMES Applications in Power and Energy Systems. IEEE Transactions on Sustainable Energy, vol. 1, no. 1, 38-47, 2010.
- 2. Bajko M.: Quench heater failure in dipole magnets. http://indico.cern.ch/event/53467/material/slides/5?contribId=20, 2009.
- 3. Balarino A.: Classical and High Temperature Superconductors:Practical Applications and Perspectives. Transporting Tens of Gigawatts of Green Power to the Market Brainstorming Workshop, http://www.iass-potsdam.de/sites/default/files/files/presentation_ballarino.pdf. Geneva: CERN, 2011.
- 4. Baldan C.A., Oliveira U.R., Shigue C.Y., Filho E.R.: Evaluation of Electrical Properties of Lap Joints for BSCCO and YBCO Tapes. IEEE Trans. Appl. Supercond., vol. 19, no. 3, 2831-2834, 2009.
- 5. Ballarino A.: Conduction-cooled 60 A resistive current leads for LHC dipole correctors. LHC-Project-Report-691, p. 11, 2004.
- 6. Ballarino A.: Current leads for the LHC magnet system. IEEE Trans. Appl. Supercond., vol. 12, no. 1, 1275-1280, 2002.
- 7. Ballarino A.: Current leads for the LHC magnet system. LHC Project Report 526, 2002.
- 8. Ballarino A.: High temperature superconducting current leads for the large hadron collider. IEEE Trans. Appl. Supercond., vol. 9, no. 2, 523-526, 1999.
- 9. Ballarino A.: Operation of 1074 HTS Current Leads at the LHC: Overview of Three Years of Powering the Accelerator. IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 4801904, 2013.
- 10. Balle C.: Oxygen Self-Rescuer Mask MSA AUER SavOx Biocell. EDMS Id:799048 (Public), https://edms.cern.ch. Geneva: CERN, 2006.
- 11. Barzi E., Lombardo E., Turrioni D., Baca F.J., Holesinger T.G.: BSCCO-2212 Wire and Cable Studies. IEEE Trans. Appl. Supercond., vol. 21, no. 3, 2325-2339, 2011.
- 12. Bascuñán J., Kim W., Hahn S., Bobrov E.S., Lee H., Iwasa Y.: An LTS/HTS NMR Magnet Operated in the Range 600-700 MHz. IEEE Trans. Appl. Supercond., vol. 17, no. 2, 1446-1449, 2007.
- 13. Bednarek M., Ludwin J. TP4 System – the main tool for ELQA. Geneva: CERN, http://indico.cern.ch, 2012.
- 14. Bertinelli F., Bottura L., Dalin J.M., Flora R.H., Heck S., Pfeffer H., et al.: Production and Quality Assurance of Main Busbar Interconnection Splices During the LHC 2008-2009 Shutdown. IEEE Trans. Appl. Supercond., vol. 21, no. 3, 1786-1790, 2011.
- 15. Bhunia U., Roy D.A., Mishra J.K., Chohan V.: AQA. EDMS Id: 627874 (Public), https://edms.cern.ch. Geneva: CERN, 2005.
- 16. Bielert E., Verweij A., Kate H.: Finite Element Modeling in 3D of the Impact of Superfluid Helium Filled Micro-Channels on the Heat Transfer through LHC Type Cable Insulation. IEEE Trans. Appl. Supercond, vol. 23, no. 3, p. 4701205, 2012.
- 17. Bottura L., Fessia P., Bajko M., Modena M., Pagano O., Perini D., et al.: Design, manufacturing status, first results of the LHC main dipole final prototypes and steps towards series manufacture. IEEE Trans. Appl. Supercond., vol. 10, no. 1, 98-102, 2000.
- 18. Bottura L., Pugnat P., Siemko A., Vlogaert J., Wyss C.: Performance of the LHC Final Design Full Scale Superconducting Dipole Prototypes. IEEE Trans. Appl. Sup., vol. 11, no. 1, 1554-1557, 2001.
- 19. Bozzini D.: Configuration of the cold mass Instrumentation for the LHC cryomagnets. EDMS Id: 491924 (Public), https://edms.cern.ch. Geneva: CERN, 2004.
- 20. Brunet J.C., Cruikshank P., Erdt W., Genet M., Parma V., Poncet A., et al.: Mechanical design and layout of the LHC standard half-cell. Particle Accelerator Conference, vol. 3, 3369-3370, 1998.
- 21. Brüning O., Collier P., Lebrun P., Myers S., Ostojic R., Poole J., et al.: LHC Design Report Volume I The LHC Main Ring, CERN, Geneva, 2004.
- 22. Brüning O.S., Collier P., Lebrun P., Myers S., Ostojic R., Poole J., et al.: LHC Design Report Volume II, The LHC Infrastructure and General Services, Safety Issues, CERN, Geneva, 2004.
- 23. Buckel W.: Superconductivity. Turner S, editor. CAS – CERN Accelerator School Superconductivity in particle Accelerators, CERN, Geneva, 1-14, 1989.
- 24. Caraban N.: Soldering of de-soldered splices. http://cds.cern.ch. Geneva: CERN Video Productions, 2014.
- 25. Caspi S., Lietzke AF.: A training mechanism in superconducting accelerator magnets. IEEE Trans. Appl. Supercond., vol. 10, no. 1, 174-177, 2000.
- 26. CERN: cern-large-hadron-collider-tunnel. Google maps, vol. https://www.google.com/maps/views/view/streetview/cern/cern-large-hadron-collider-tunnel/LQlhUbhEmPIAAAQJODm60g?gl=us&heading=143&pitch=82&fovy=110, 2014.
- 27. CERN. Cross section of an LHC dipole in the tunnel. http://cds.cern.ch/record/1365795. Geneva: CERN, 2011.
- 28. CERN. Installation of the diode in a LHC 15m dipole. http://cds.cern.ch/record/843124?ln=pl. Geneva: CERN, 2000.
- 29. CERN. LHC Access Control System tutorial. http://cds.cern.ch/record/1094573?ln=pl. Geneva: CERN, 2008.
- 30. CERN. LHC tunnel. http://cds.cern.ch. Geneva: CERN, 2009.
- 31. CERN. LHC Tunnel transport. http://home.web.cern.ch/topics/large-hadron-collider. Geneva: CERN, 2014.
- 32. CERN: LHC: from hot to cold. CERN Bulletin, vol. 37-38, no. BUL-NA-2006-115, 2006.
- 33. CERN. Master pieces of a 13 kA current lead for the LHC. http://cds.cern.ch/record/735180#06, 2003.
- 34. CERN SM18 TEST FACILITIES. SM18 Horizontal Test Benches. https://espace.cern.ch/ test-te-dep-msc-tf/sm18/default.aspx. Geneva: CERN, 2014.
- 35. CERN. The new biometric access control system resembles a big electronic eye. http://cds.cern.ch/record/978809?ln=pl. Geneva: CERN, 2006.
- 36. CERN. Training Rules for Dipole – Materiały dostępne na stronie internetowej. http://sm18- public.web.cern.ch, 2006.
- 37. Cieśla A.: Nadprzewodnictwo w stulecie odkrycia: wybrane przykłady zastosowań. Przegląd Elektrotechniczny, vol. 87, no. 12a, 1-6, 2011.
- 38. Cieśla A.: Use of the low (LTS) and high (HTS) termperature superconductors in the magnetic separation. Economic comparison. Przegląd Elektrotechniczny, vol. 87, no. 3, 21-24, 2011.
- 39. Coull L., Hagedorn D., Remondinio V., Rodrigues-Mateos V.: LHC Magnet Quench Protection System. IEEE Trans. Magnetics, vol. 30, no. 4, 1742-1745, 1994.
- 40. Coupard J.: LHC underground and access system. EDMS Id:1001086 (Public), https://edms.cern.ch. Geneva: CERN, EN / MEF-LPC, 2011.
- 41. Czerwiński D., Jaroszyński L., Kozak J., Majka M.: Model polowy przepustów prądowych wykonanych z taśm nadprzewodnikowych HTS drugiej generacji. Przegląd elektrotechniczny, vol. 2012, no. 9b, 230-233, 2012.
- 42. Davide B., Vincent C., Mateusz B., Jaromir L.: Qualification of the superconducting circuits during hardware commissionning. EDMS Id:788197 (Public), https://edms.cern.ch. Geneva: CERN, 2013.
- 43. De Rijk G., Bajko M., Bottura L., Buzio M., Chohan V., Deniau L., et al.: Performance of LHC main dipoles for beam operation. Proceedings of EPAC 2006, Edinburgh, Scotland, 2610-2612, 2006.
- 44. Denz R., Dahlerup-Petersen K., Siemko A., Steckert J.: Quench Protection Systems (QPS) for the LHC. Spring joint LARP/HiLumi-LHC Collaboration Meeting, vol. https://indico.-fnal.gov, 2013.
- 45. Devred A.: Practical Low-Temperature Superconductors for Electromagnets, CERN, Geneva, 2004.
- 46. Devred A.: Superconducting magnets for particle accelerators and storage rings. Wiley Encyclopedia of Electrical and Electronics Engineering, vol. Vol. 20, p. 743-762, 1999.
- 47. Dezillie B., Artoos K., Siemko A., Mompo R., Tommasini D.: Study of the mechanical disturbances in superconducting magnets using piezoelectric sensors and quench antenna. LHC Project Report 498. CERN, 2001.
- 48. Dubey K., Ajay K., Chohan V.: Guideline Examples for Voltage Tap signal noise. EDMS Id: 627874 (Public), https://edms.cern.ch. Geneva: CERN, 2005.
- 49. Dubey K., Kasberkar A., Pirotte F., Chohan V.: Guideline Examples for Quench Heater analysis. EDMS Id: 627874 (Public), https://edms.cern.ch. Geneva: CERN, 2005.
- 50. Fang J., Wen J., Wang S., Shi J., Ren L., Tang Y., et al.: Laboratory and Field Tests of Movable Conduction-Cooled High-Temperature SMES for Power System Stability Enhancement. IEEE Trans. Appl. Supercond., vol. 23, no. 4, p. 5701607, 2013.
- 51. Feipeng N., Meifen W., Huan Y., Guoqing Z., Wenbin M., Zhiyong L., et al.: Physical Design of High Gradient Superconducting Magnetic Separation Magnet for Kaolin. IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 3700104, 2012.
- 52. Fetisov S., Zubko V., Radchenko I., Mukhanov S., Vysotsky V.: 1-G HTS Split Coil Magnet for Research Purposes. IEEE Trans. Appl. Supercond, vol. 22, no. 3, p. 3900404, 2012.
- 53. Fundamentals of superconductors. http://www.physnet.uni-hamburg.de/home/vms/reimer/htc/pt3.html, 2009.
- 54. Glowacki B.A., Majoros M.: MgB2 conductors for dc and ac applications. Physica C, vol. 372-376, 1235-1240, 2002.
- 55. Glowacki B.A., Majoros M., Eisterer M., Toenies S., Weber H.W., Fukutomi M., et al.: MgB2 superconductors for applications. Physica C, vol. 387, 153-161, 2003.
- 56. Granieri P.P., Casali M., Breschi M., Bottura L., Willering G.: Analysis of Defective Interconnections of the 13 kA LHC Superconducting Bus Bars. IEEE Trans, Appl. Supercond., vol. 22, no. 3, p. 4000504, 2012.
- 57. Grzesik B., Stąpień M., Krosny S.: FEM and laboratory tests of HTS transformer with improved utilization of superconducting wire. Przegld elektrotechniczny, vol. 85, no. 5, 166-169, 2009.
- 58. Hayashi H., Hatabe Y., Nagafuchi T., Taguchi A., Terazono K., Ishii T., et al.: Test Results of Power System Control by Experimental SMES. IEEE Trans Appl. Supercond., vol. 16, no. 2, 598-601, 2006.
- 59. Hazelton D.W.: 2G HTS Conductors at SuperPower. Low Temperature High Field Superconductor Workshop 2012, Napa, 2012.
- 60. Heine K., Tenbrink J., Thoner M.: High-field critical current densities in Bi2Sr2Ca1Cu2O8+x/Ag wires. Appl. Phys. Lett., no. 55, 2441-2443, 1989.
- 61. Hiroshi U., Ishiyama A., Muromachi K., Suzuki T., Shikimachi K., Hirano N., et al.: Quench Detection and Protection of Cryocoolef-Cooled YBCO Pancake for SMES. IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4702804, 2012.
- 62. Iwasa Y.: Protection of HTS magnets. Physica C, vol. 426–431, no. 2, p. 1348-1352, 2005.
- 63. Iwasa Y., Bascuñán J., Hahn S., Park D.K.: Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI. Physics Procedia, vol. 36, 1348-1353, 2012.
- 64. Jacquemod A., Poncet A., Schauf F., Skoczeń B., Tock J.P.: Inductive soldering of the junctions of the main superconducting bus-bars for the LHC. LHC Project Report 698, CERN, Geneva, 2003.
- 65. Janowski T., Kondratowicz-Kucewicz B., Kozak J., Kozak S., Majka M., Malinowski H., et al.: Nadprzewodnikowe zasobniki energii, LIBER DUO s.c., Lublin, 2007.
- 66. Joo J.H., Sano H., Kim S.B., Murase S., Kwon Y.K., Kim H.M.: Development of Quench Detection Method Based on Normal Transition Behaviors for HTS Coils. IEEE Trans. Appl. Supercond., vol. 19, no. 3, 2415-2418, 2009.
- 67. Kalsi S.S.: Applications of High Temperature Superconductors to Electric Power Equipment, WILEY, Piscstaway NJ, 2011.
- 68. Kalsi S.S., Aized D., Connor B., Snitchler G., Campbell J., Schwall RE., et al.: HTS SMES Magnet Design and Test Results. IEEE Trans. Appl. Sup., vol. 7, no. 2, 971-976, 1997.
- 69. Kashikhin V.S., Andreev N., Kerby J., Orlov Y., Solyak N., Tartaglia M., et al.: Superconducting Splittable Quadrupole magnet for Linear Accelerators. IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4002904, 2012.
- 70. Kashikhin V., Bross A., Prestemon S.: Quench Analysis of MICE Spectrometer Superconducting Solenoid. IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4702904, 2012.
- 71. Kim H.J., Hwang Y.J., Choi S., Lee H., Ko T.K.: A Study on Recovery Characteristics of Joined Tapes From the View of Thermal and Electrical Variation for Superconducting Magnets. IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4703505, 2012.
- 72. Kim A.R., Kim G.H., Kim K.M., Kim J.G., Kim J.G., Park M., et al.: Design and Manufacturing of a SMES Model Coil for Real Time Digital Simulator Based Power Quality Enhancement Simulation. IEEE Trans. Appl. Supercond., vol. 20, no. 3, 1339-1343, 2010.
- 73. Kirby G., Ostler J., Perini D., Siegel N., Siemko A., Tommasini D., et al.: Power test results of the first LHC second generation superconducting single aperture 1m long dipole models. ICEC16/ICMC Proceedings, 837-842, 1996.
- 74. Kitaguchi H., Kumakura H., Hayashi T., Fujino K.: A Bi-2223 Layer-Winding Coil Using 540 m Tape Including a Joint Inside the Winding. IEEE Trans. Appl. Supercond., vol. 21, no. 3, 1624-1627, 2011.
- 75. Kozak J.: Automatic continuity test of superconducting quadrupoles. Przegld elektrotechniczny, vol. 85, no. 5, 186-189, 2009.
- 76. Kozak J.: Głowica grzejna lutownicy taśm, zwłaszcza taśm nadprzewodnikowych, Zgłoszenie patentowe P.400536, 2012.08.28.
- 77. Kozak S.: Modelowanie elektrycznych urządzeń nadprzewodnikowych, Instytut Elektrotechniki, Warszawa, 2005.
- 78. Kozak J.: Testy głównych elektromagnesów nadprzewodnikowych LHC. Zastosowania nadprzewodników, Lublin, 98-103, 2008.
- 79. Kozak J., Kozak S., Janowski T., Majka M.: Design and Performance Results of First Polish SMES. IEEE Trans. Appl. Supercond., vol. 19, no. 3, 1981-1984, 2009.
- 80. Kozak J., Majka M.: Nadprzewodnikowy zasobnik energii. Janowski T., Stryczewska D., Wac-Wodarczyk A., editors. Technologie nadprzewodnikowe i plazmowe w energetyce, Lubelskie Towarzystwo Naukowe, Lublin, 75-90, 2009.
- 81. Kozak J., Majka M.: Sposób lutowania miedzianych końcówek do tamy nadprzewodnikowej, Zgłoszenie patentowe P.400436, 2012.08.18.
- 82. Kozak J., Majka M.: Technologia łączenia taśm HTS 2G w uzwojeniach nadprzewodnikowych urządzeń elektrycznych. Przegląd Elektrotechniczny, vol. R.90, no. 3, 157-160, 2014.
- 83. Kozak J., Majka M., Kozak S., Janowski T.: Comparison of Inductive and Resistive SFCL. IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 5600604, 2013.
- 84. Kozak J., Majka M., Kozak S., Janowski T.: Design and Tests of Coreless Inductive Superconducting Fault Current Limiter. IEEE Trans. Appl. Sup, vol. 22, no. 3, p. 5601804, 2012.
- 85. Kozak J., Majka M., Kozak S., Janowski T.: Performance of SMES System With HTS Magnet. IEEE Trans. Appl. Supercond., vol. 20, no. 3, 1348-1351, 2010.
- 86. Kozak J., Wojtasiewicz G.: Elektromagnesy nadprzewodnikowe akceleratorów cząstek. Janowski T., Stryczewska D., Wac-Włodarczyk A., editors. Technologie nadprzewodnikowe i plazmowe w energetyce, Lubelskie Towarzystwo Naukowe, Lublin, 114-137, 2009.
- 87. Lech W.: Metody chłodzenia elektromagnesów nadprzewodnikowych, Instytut Elektrotechniki, Warszawa, 1983.
- 88. Lee P.J.: Engineering Superconductivity, NY: John Wiley, New York, 2001.
- 89. Lee P.J., Larbalestie D.C.: Niobium-titanium superconducting wires: nanostructures by extrusion and wire drawing. Wire J. Int., vol. Vol. 36, no. No. 2, p. 61-66, 2003.
- 90. Leroy D., Krzywiński J., Remondino V., Walkiers L., Wolf R.: Quench obserwation in LHC superconducting one meter long dipole models by field perturbation measurements. IEEE Trans. Appl. Sup., vol. 3, no. 1, 781-784, 1993.
- 91. Maguire J.F., Yuan J.: Status of high temperature superconductor cable and fault current limiter projects at American Superconductors. Physica C, vol. Vol.469, 874-880, 2009.
- 92. Majka M.: Rozprawa doktorska: Ograniczenia w budowie nadprzewodnikowych ograniczników duych prdów zwarciowych, Instytut Elektrotechniki, Warszawa, 2011.
- 93. Majka M., Janowski T., Kondratowicz-Kucewicz B., Kozak S.: Electrical insulation for Bi-2223/Ag Magnet for SMES. Scientific Papers of the Institute of Electrical Engineering Fundamentals of the Wrocaw University of Technology, no. 46, 254-257, 2007.
- 94. Marchevsky M., Lenseth K., Rar A., Gogia B., Schmidt R., Knoll A., et al.: Second Generation HTS Conductor Design and Engineering for Electrical Power Applications. IEEE Trans. Apppl. Supercond., vol. 19, no. 3009-3013, 2009.
- 95. Marken K.R., Miao H., Meinesz M., Czabaj B., Hong S.: Progress in Bi-2212 Wires for High Magnetic Field Applications. IEEE Trans. Appl. Supercond., vol. 16, no. 2, 992-995, 2006.
- 96. Markiewicz W.D., Miller J.R., Schwartz J., Trocewitz U.P., Weijers H.W.: Perspective on a Superconducting 30 T / 1.3 GHz NMR superconducting Magnet. IEEE Trans. Appl. Supercond., vol. 16, no. 2, 1523-1526, 2006.
- 97. Maroussov V., Siemko A.: A Method to Evaluate the Temperature Profile in a Superconducting Magnet During a Quench. IEEE Trans. Appl. Sup., vol. 9, 1153-1156, 1998.
- 98. Masur L.: Doubling the efficiency with Superconductivity. Industrial Heating – The International Journal of Thermal Technology, 2008.
- 99. Masur L., Buehrer C., Ostermeyer B., Witte W.: Magnetic Billet Heating. Light Metal Age – The Internationale Magazine of The Light Metal Industry, 2009.
- 100. Materiały informacyjne Europejskiej Organizacji Badań Jądrowych CERN. www.cern.ch, 2011.
- 101. Materiały informacyjne firmy American Superconductor. Amperium™ Wire Insulation, 2010.
- 102. Materiały informacyjne firmy American Superconductor. Brass Laminated Amperium® Wire, BRSAMP_DS_A4_0912, 2012.
- 103. Materiały informacyjne firmy American Superconductor. Copper Laminated Amperium® Wire, CPRAMP_DS_A4_1112, 2012.
- 104. Materiały informacyjne firmy American Superconductor. Service Note SN002 Guidelines for Handling and Soldering Amperium™ Wire, 2010.
- 105. Materiały informacyjne firmy American Superconductor. Stainless Steel Laminated Amperium® Wire, SSAMP_DS_A4_1112, 2012.
- 106. Materiały informacyjne firmy American Superconductor. www.amsc.com, 2013.
- 107. Materiały informacyjne firmy Bruker BioSpin. Magnetic Resonance – Product Overview, 2013.
- 108. Materiały informacyjne firmy Bruker. www.bruker-est.com, 2013.
- 109. Materiały informacyjne firmy Columbus Superconductors. www.columbussuperconductors. com, 2013.
- 110. Materiały informacyjne firmy Cryomech. www.cryomech.com, 2013.
- 111. Materiały informacyjne firmy DuPont. Kapton – Physical and Thermal Properties, 2013.
- 112. Materiały informacyjne firmy General Electric Healthcare. www.gehealthcare.com, 2013.
- 113. Materiały informacyjne firmy High Performance Magnetics. http://ciceft.com, 2013.
- 114. Materiały informacyjne firmy Outokumpu. www.outokumpu.co.uk, 2013.
- 115. Materiały informacyjne firmy Outotec Inc. Cryofilter® superconducting magnetic separator, 2007.
- 116. Materiły informacyjne firmy Stirling cryogenics. www.stirlingcryogenics.com, 2012.
- 117. Materiały informacyjne firmy Sumitomo Electric Industries ltd. http://global-sei.com/super/magnet_coil_e/index.html, 2013.
- 118. Materiały informacyjne firmy SuperPower Inc. A Furukawa Company. SuperPower®2G HTS Wire Specifications, 2013.
- 119. Materiały informacyjne firmy SuperPower Inc. www.superpower-inc.com, 2013.
- 120. Materiały informacyjne firmy SuperPower, Inc. SuperPower®2G HTS Wire Specifications, 2009.
- 121. Materiały informacyjne firmy Zenergy power. www.zenergypower.com, 2012.
- 122. Materiały informacyjne ITER. http://www.iter.org/newsline/89/876, 2009.
- 123. Mess K.H., Schmuser P.: Superconducting Accelerator magnets. Turner S, editor. CAS – CERN Accelerator School Superconductivity in particle Accelerators, CERN, Geneva, 87-104, 1989.
- 124. Mompo R. Dielectrical test on LHC dipoles. EDMS Id: 677028 (Public), https://edms.cern.ch. Geneva: CERN, 2005.
- 125. Mompo R., Bednarek M., DAngelo G.: MIC Tests During ELQA Campaign Magnet Instrumentation Check. EDMS Id:1009823 (Public), https://edms.cern.ch. Geneva: CERN, TE-MPE-EI, 2009.
- 126. Mompo R., Kozak J., Siemko A.: Procedure for automated continuity and resistance measurements. EDMS Id:739570 (Public), https://edms.cern.ch. Geneva: CERN, 2006.
- 127. Mompo R., Kozak J., Stafiniak A., Siemko A.: ACT Project Functional Specification. EDMS Id: 708126 (Public), https://edms.cern.ch. Geneva: CERN, 2006.
- 128. Nadprzewodnikowy bezrdzeniowy indukcyjny ogranicznik prądu zwarciowego średniego napięcia. Przegląd Elektrotechniczny, vol. 88, no. 9b, 245-248, 2012.
- 129. Nagamatsu J., Nakagawa N., Muranaka T., Zenitani Y., Akimitsu J.: Superconductivity at 39 K in magnesium diboride. NATURE, vol. 410, 63-64, 2001.
- 130. Nanato N., Yanagishita M., Nakamura K.: Quench Detection of Bi-2223 HTS coil by Partial Active Power Detecting Method. IEEE Trans. Appl. Supercond., vol. 11, no. 1, 2391-2393, 2001.
- 131. Ninin P., Scibile L., Ladzinski T.: Access Control and Safety System for the LHC Experiments. EDMS Id: 819346 (Public), https://edms.cern.ch. Geneva: CERN, Technical Support Department, 2007.
- 132. Ohnishi H., Ishiyama A., Watanabe T., Hirano N., Nagaya S.: Quench Detection Method for Cryocooler-Cooled YBCO Pancake Coil for SMES. IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 4701404, 2013.
- 133. Perin R.: Status of LHC Programme and Magnet Development. IEEE Trans. Appl. Supercond., vol. 5, no. 2, 189-195, 1995.
- 134. Pugnat P., Khomenko B., Rijllard A., Sanfilippo S., Siemko A.: Statistical Diagnosis Method of Conductor Motions in Superconducting Magnets to Predict their Quench Performance. IEEE Trans. Appl. Sup., vol. 11, no. 1, 1705-1708, 2001.
- 135. Pugnat P., Pojer M., Bouchenoua A.S., D’Angelo G., Denat D., Flamand F., et al.: Investigation of the Electrical Insulation Problems developed in the Quench Heater Circuits of the LHC Pre-series Cryo-Dipole HCLBBR_000-CR002002. EDMS Id: 339478 (Public), https://edms.cern.ch. Geneva: CERN, 2002.
- 136. Pugnat P., Siemko A.: Review of Quench Performance of LHC Main Superconducting Magnets. IEE Trans. Appl. Supercond., vol. 17, no. 2, 1091-1096, 2007.
- 137. Richter D., Adam J.D., Leroy D., Obreli L.R.: Strand coating for the superconducting cables of the LHC main magnets. IEEE Trans. Appl. Supercond., vol. Vol. 9, no. No. 2, p. 735-741, 1999.
- 138. Rijk G., Bajko M., Cornelis M., Fessia P., Miles J., Modena M., et al.: Electrical Integrity Tests During Production of the LHC Dipoles. IEEE Trans. Appl. Supercond., vol. 16, no. 2, 200-203, 2006.
- 139. Rogalla H., Kes P.H.: 100 Years of Superconductivity, CRC Press Taylor & Francis Group, 2012.
- 140. Roger V., Bajko M., Petersen K., D’Angelo G., Dib G., Giloux C., et al.: Contact Resis-tances in the Cold Bypass Diode Leads of the Main LHC Magnets. IEEE Trans. Appl. Supercond., vol. 24, no. 3, p. 4802504, 2014.
- 141. Rossi L.: Superconductivity: its role, its success and its seatbacks in the large Hadron Collider of CERN. Superconductor Science and Technology, vol. 23, 1-17, 2010.
- 142. Roy D.A., John J.: Training/Discussion on Test Procedures for Magnet Testing at SM18. http://www.cern.ch/sm18-public/learning/training_sm18_presentation.ppt. Geneva: CERN, 2005.
- 143. Rupich M.W., Li X., Sathyamurthy S., Thieme C.L.: Second Generation Wire Development at AMSC. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, vol. 23, no. 3, p. 6601205, 2013.
- 144. Sanfilippo S., Siemko A., Tommasini D., Venturini-Delsolaro W.: Training quench perfor-mance and quench location of the short superconducting dipole models for the LHC. IEEE Trans. Appl. Supercond., vol. 12, no. 1, 251-253, 2002.
- 145. Savary F., Bajko M., Bednarek M.J., Dahlerup-Petersen K., D'Angelo G., Dib G., et al.: Performance review and reengineering of the protection diodes of the LHC main superconducting magnets. IEEE Trans. Appl. Supercond., vol. 24, no. 3, p. 4701004, 2014.
- 146. Scanlan R.M., Malozemoff A.P., Larbalestier D.C.: Superconducting Materials for Large Scale Applications. Proceedings of the IEEE, vol. Vol. 92, no. 10, 1639-1654, 2004.
- 147. Schmalzle J., Ambrosio G., Anerella M., Caspi S., Cozzolino J., Felice H., et al.: Mechanical Design, Assembly and Testing of Support Structure for LARP Nb3Sn Quadrupole Magnets for LHC. IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4003503, 2012.
- 148. Shin H.S., Dizon J.R., Oh S.S., Bonifacio R.F.: Bending Strain characteristics of the transport property in the lap-joined coated conductors tapes. IEEE Trans. Appl. Supercond., vol. 19, 2991-2994, 2009.
- 149. Shin-ichi Inage. Prospects for Large-Scale Energy Storage in Decarbonised Power Grids. Paris: International Energy Agency, 2009.
- 150. Siemko A.: Magnet Quench Process. Proc. of Chamonix XI workshop, 245-249, 2001.
- 151. Siemko A., Berrig O., Bottura L., Buzzio M., Chohan V., Floch E., et al.: Quench Performance and Field Quality of the LHC Preseries Superconducting Dipoles. IEEE Trans. Appl. Supercond., vol. 14, no. 2, 165-168, 2004.
- 152. Siemko A., Calvi M.: Quench levels and experience from magnet tests at CERN, https://indico.cern.ch. AMT Workshop CERN, 2005.
- 153. Siemko A. i inni: Quench location in the superconducting model magnets for the LHC by means of pick-up coils. IEEE Trans. Appl. Sup., vol. 5, no. 2, 1028-1031, 1995.
- 154. Surdacki P.: Stabilno termiczna silnoprdowych urzdze nadprzewodnikowych, Politechnika Lubelska, Lublin, 2012.
- 155. Takayasu M., Ballinger R.G., Goldfarb R.B., Squitieri A.A., Lee P.J., Larbalestier D.C.: Multifilamentary Nb3Sn wires reacted in hydrogen gas. Adv. Cryog. Eng. (Materials), vol. 48, p. 986-993, 2002.
- 156. Thomas D.B., Wilson M.N.: Filamentary superconductors for pulsed magnets. Proc. of 4th International Conference on Magnet Technology (MT 4), Upton, p. 493-497, 1972.
- 157. Viguier M.: Deploying the self-rescue mask (SRM). http://cds.cern.ch. Geneva: CERN Video Productions, 2012.
- 158. Wang Q., Song S., Lei Y., Dai Y., Zhang B., Wang C., et al.: Design and Fabrication of Conduction-Colled High Temperature Superconducting Magnet for 10 kJ Superconducting Magnetic Energy Storage System. IEEE Trans. Appl. Supercond., vol. 16, no. 2, 570-573, 2006.
- 159. Wei B., Yang Y., Qiu M., Zhang H., Zhu J., Chen P., et al.: The Quench Detection System for YBCO Superconducting Magnets. IEEE Trans. Applied Supercond., vol. 20, no. 3, 1369-1372, 2010.
- 160. Wilson M.N.: NbTi superconductors with low ac loss: a review. Cryogenics, vol. 48, no. 7-8, 381-395, 2008.
- 161. Xie Y.Y., Marchevsky M., Zhang X., Lenseth K., Chen Y., Xiong X., et al.: Second-Generation HTS Conductor Design and Engineering for Electrical Power Applicarions. IEEE Trans. Appl. Supercond., vol. 19, no. 3, 3009-3013, 2009.
- 162. Ywasa Y.: Case Studies in Superconducting Magnets: Design and Operational Issues, Plenum Press, New York, 1994.
- 163. Zlobin A.V., Andreev N., Apollinari G., Auchmann B., Barzi E., Bossert R., et al.: Design ans Fabrication of Single-Aperture 11 T Nb3Sn Dipole Model for LHC Upgrades. IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4001705, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4e35dd5-42fa-4790-babf-214711398bfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.