PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of Functionally Graded Composites through Friction Stir Processing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An Investigation was conducted to produce Aluminium based Functionally graded material (FGM) composites by Friction stir processing (FSP). A reinforcement strategy featuring the use of Alumina and TiC reinforcements was investigated, where holes were drilled in an Aluminium plate, filled with reinforcements and stirred using FSP. A mathematical model was formulated for the positioning of holes in such a manner that the composition of the reinforcements varies from maximum to minimum over a given length. Samples were subjected to various numbers of FSP passes from one to three with a 100% overlap and its influence on particle distribution and homogeneity was studied using Scanning electron microscopy (SEM) at cross sections parallel to the tool traverse direction. A progressive gradient in hardness values was observed for the surface composites at all the passes.
Rocznik
Strony
95--101
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Mahatma Gandhi Institute of Technology, Hyderabad, India
Bibliografia
  • 1. Lu, L., Chekroun, M., Abraham, O., Maupin, V., Villain, G., 2011. Mechanical Properties estimation of functionally graded materials using surface waves recorded with a laser interferometer. NDT&E International. 44, 169-177.
  • 2. Marin, L., 2005. Numerical solution of the Cauchy problem for Steady-State heat transfer in two dimensional functionally graded materials. International Journal of Solids and Structures. 42, 4338-4351.
  • 3. Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S., 2012. Functionally Graded Material: An Overview. Proceedings of the World Congress on Engineering.
  • 4. Groves, J.F., Wadley, H.N.G., 1997. Functionally graded materials synthesis via low vacuum directed vapor deposition. Composites Part B: Engineering. 28, 57-69.
  • 5. Kieback, B., Neubrand, A., Riedel, H., 2003. Processing techniques for functionally graded materials. Materials Science and Engineering. 362, 81-105.
  • 6. Lin, X., Yue, T.M., 2005. Phase formation and microstructure evolution in laser rapid forming of graded SS316L/Rene88 DT alloy. Materials Science and Engineering. 402, 294-306.
  • 7. MA, Z.Y., 2008. Friction stir processing Technology: A review. Metallurgical and Materials Transactions. 39, 642-658.
  • 8. Mishra, R.S., Ma, Z.Y., Charit, I., 2003. Friction stir processing: a novel technique for fabrication of surface composite. Materials Science and Engineering. A341, 307-310.
  • 9. Mahmoud, E.R.I., Takahashi, M., Shibayanagi, T., Ikeuchi, K., 2009. Effect of Friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Science and Technology of Welding and Joining. 14, 413-425.
  • 10. Kumar, K., Kailas, S., 2008. The role of friction stir welding tool on material flow and weld formation. Material Science Engineering. 485, 367-374.
  • 11. Gandra, J., Miranda, R., Vilaca, P., Velhinho, A., Pamies, T.J., 2011. Functionally graded materials produced by friction stir processing. Journal of Materials Processing Technology. 211, 1659-1668.
  • 12. Zhang, Z., Chen, D.L., 2006. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nano composites: A model for predicting their yield strength. Scripta Materialia. 54, 1321-1326.
  • 13. Reynolds, A.P., Duvall, F., 1999. Digital image correlation for determination of weld and base metal constitutive behavior. Welding Journal-Newyork. 78, 355-360.
  • 14. Leitão, C., Galvão, I., Leal, R.M., Rodrigues, D.M., 2012. Determination of local constitutive properties of aluminium friction stir welds using digital image correlation. Materials and Design. 33, 69-74.
  • 15. Mishra, R.S., Ma, Z.Y., 2005. Friction stir welding and processing. Materials Science and Engineering. 50, 1-78.
  • 16. Thangarasu, A., Murugan, N., Dinaharan, I., Vijay, S.J., 2012. Microstructure and microhardness of AA1050/TiC surface composite fabricated using friction stir processing. Indian Academy of Sciences. 37, 579-586.
  • 17. Zarghani, A.S., Bozorg, S.F.K., Hanzaki, A.Z., 2009. Microstructures and mechanical properties of Al/Al2O3 surface nano composite layer produced by friction stir processing. Materials Science and Engineering. 500, 84-91.
  • 18. Miranda, R.M., Santos, T.G., Gandra, J., Lopes, N., Silva, R.J.C., 2013. Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys. Journal of Materials Processing Technology. 213, 1609-1615.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4e1baf0-ad47-4899-90d8-c05b7cfb6f63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.