Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
From a management perspective, water quality is determined by the desired end use. Water intended for leisure, drinking water, and the habitat of aquatic organisms requires higher levels of purity. In contrast, the quality standards of water used for hydraulic energy production are much less important. The main objective of this work is focused on the development of an evaluation system dealing with supervised classification of the physicochemical quality of the water surface in the Moulouya River through the use of artificial intelligence. A graphical interface under Matlab 2015 is presented. The latter makes it possible to create a classification model based on artificial neural networks of the multilayer perceptron type (ANN-MLP). Several configurations were tested during this study. The configuration [9 8 3] retained gives a coefficient of determination close to the unit with a minimum error value during the test phase. This study highlights the capacity of the classification model based on artificial neural networks of the multilayer perceptron type (ANN-MLP) proposed for the supervised classification of the different water quality classes, determined by the calculation of the system for assessing the quality of surface water (SEQ-water) at the level of the Moulouya River catchment area, with an overall classification rate equal to 98.5% and a classification rate during the test phase equal to 100%.
Wydawca
Czasopismo
Rocznik
Tom
Strony
240--247
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Moulay Ismail University, National School of Arts and Crafts, Laboratory of Mechanics, Mechatronics, and Command, Team of Electrical Energy, Maintenance and Innovation, Meknes, Marjane 2, BP: 298 Meknes 50050, Morocco
autor
- Moulay Ismail University, Faculty of Sciences, Water Sciences and Environmental Engineering team, Meknes, Morocco
autor
- Moulay Ismail University, Faculty of Sciences, Water Sciences and Environmental Engineering team, Meknes, Morocco
autor
- Moulay Ismail University, Faculty of Sciences, Department of Geology, Laboratory of Geo-Engineering and Environment, Meknes, Morocco
autor
- Moulay Ismail University, National School of Arts and Crafts, Laboratory of Mechanics, Mechatronics, and Command, Team of Electrical Energy, Maintenance and Innovation, Meknes, Marjane 2, BP: 298 Meknes 50050, Morocco
autor
- Moulay Ismail University, Meknes, Morocco
Bibliografia
- AFNOR 1997. Qualité de l'eau. Recueil des normes françaises environnement [Water quality. Collection of French environmental standards]. T. 1, 2, 3, 4 pp. 1372.
- AGIRRE-BASURKO E., IBARRA-BERASTEGI G., MADARIAGA I. 2006. Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environmental Modelling and Software. Vol. 21(4) p. 430–446. DOI 10.1016/j.en-vsoft.2004.07.008.
- ALTMAN E.I., MARCO G., VARETTO F. 1994. Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance. Vol. 18(3) p. 505–529. DOI 10.1016/0378-4266(94) 90007-8.
- BERRADA M., EL HMAIDI A., MONYR N., ABRID D., ABDALLAOUI A., ESSAHLAOUI A., EL OUALI A. 2016. Self-organising map for the detection of seasonal variations in Sidi Chahed Dam sediments (Northern Morocco). Hydrological Sciences Journal. Vol. 61(3) p. 628–635. DOI 10.1080/02626667.2014.964717.
- BOUDAD B., SAHBI H., MANSSOURI I., MANSSOURI T. 2014. Using a model hybrid based on ANN-MLP and the SPI index for drought prediction case of Inaouen basin (Northern Morocco). International Journal of Science, Engineering and Technology. Vol. 2(6) p. 1301–1309.
- BOUDEBBOUZ B., MANSSOURI I., MOUCHTACHI A., EL KIHEL B. 2014. Using the total multiple linear regression and artificial neurons network-multi layer perceptron for modelling the normal system, at variable point of functioning of a continuous distillation column Methylcyclohexane. International Journal of Science and Research. Vol. 3. Iss. 6 p. 2829–2835.
- BOUDEBBOUZ B., MANSSOURI I., MOUCHTACHI A., MANSSOURI T. 2015. Utilisation d’un modèle hybride basé sur les réseaux de neurones artificiels-PMC couplés à la décomposition en ondelettes pour la modélisation du régime normale à point de fonctionnement variable. Cas d'une installation industrielle [Utilization of a hybrid model based on artificial neural networks-PMC coupled to wavelet decomposition for the modeling of the normal regime at variable operating point. Case of an industrial installation]. Xème Conférence Internationale : Conception et Production Intégrées. 02–04.12.2015 Tanger, Morocco. hal-01260737.
- CORNET C. 2003. Restitution de paramètres nuageux par méthodes neurales dans des de nuages hétérogènes à couverture fractionnaire [Restitution of cloud parameters by neural methods in heterogeneous clouds with fractional coverage]. PhD Thesis. Clermont. Blaise Pascal Unversity pp. 174.
- EL TABACH E., LANCELOT L., SHAHROUR I., NAJJAR Y. 2007. Use of artificial neural network simulation metamodelling to assess groundwater contamination in a road project. Mathematical and Computer Modelling. Vol. 45(7–8) p. 766–776. DOI 10.1016/j.mcm.2006 .07.020.
- HARTERT L. 2010. Reconnaissance des formes dans un environnement dynamique appliquée au diagnostic et au suivi des systèmes évolutifs [Shapes recognition in a dynamic environment applied to the diagnosis and monitoring of evolving systems]. PhD Thesis. Reims. University of Reims Champagne-Ardenne pp. 246.
- KANAOUI N. 2007. Contribution à l’étude et à la mise en oeuvre d’approches hybrides d’aide au diagnostic : Application aux domaines biomédical et industriel [Contribution in the study and implementation of hybrid diagnostic of aid approaches: Application to biomedical and industrial fields]. PhD Thesis. Université Paris-Est Créteil Val de Marne (UPEC) pp. 180.
- KONG L. 2011. Modélisation des crues de bassins karstiques par réseaux de neurones. Cas du bassin du Lez (France) [Modeling of floods in karst basins by neural networks. Case of the Lez basin (France)]. PhD Thesis. Université de Montpellier II, Sciences et Techniques du Languedoc pp. 230.
- LALILTI A., EL MOUMNI B., EL ARRIM A., EL MALKI H., ALAOUI MHAMMEDI N., OUSMANA H., BERRADA M., EL HMAIDI A. 2017. Prédiction des carbonates, des éléments biogènes et détritiques par les réseaux de neurones artificiels dans les dépôts des volcans de boue de la marge atlantique nord marocaine [Prediction of carbonates, biogenic and detrital elements by artificial neural networks in the Moroccan North Atlantic margin deposits of mud volcanoes]. Bulletin de l’Institut Scientifique, Rabat. Section Sciences de la Terre. Vol. 39 p. 121–134.
- LUK K.C., BALL J.E., SHARMA A. 2001. An application of artificial neural networks for rainfall forecasting. Mathematical and Computer Modelling. Vol. 33(6–7) p. 683–693. DOI 10.1016/S0895-7177 (00)00272-7.
- MANSSOURI I. 2009. Contribution à la détection et au diagnostic des défauts de fonctionnement par l'utilisation des techniques de l'Intelligence Artificielle: Application à une unité industrielle [Contribution to the detection and diagnosis of operating faults through the use of Artificial Intelligence techniques: Application to an industrial unit]. PhD Thesis. Oujda, Morocco. Ecole Nationale des Sciences Appliquées, Université Mohamed Premier pp. 205.
- MANSSOURI I., CHETOUANI Y., EL KIHEL B. 2008. Using neural networks for fault detection in a distillation column. International Journal of Computer Applications in Technology. Vol. 32(3) p. 181–186. DOI 10.1504/IJCAT.2008.020953.
- MANSSOURI I., EL HMAIDI A., MANSSOURI T.E., EL MOUMNI B. 2014. Prediction levels of heavy metals (Zn, Cu and Mn) in current Holocene deposits of the eastern part of the Mediterranean Moroccan margin (Alboran Sea). IOSR Journal of Computer Engineering. Vol. 16 p. 117–123. DOI 10.9790/0661-1618117123.
- MANSSOURI I., TALHAOUI A., EL HMAIDI A., LAHMAMI H., JADDI H., OUSMANA H., BERRRADA M. 2020. Unsupervised classification of water quality by the use of artificial intelligence: The case of surface water in Moulouya River (NE, Morocco). Moroccan Journal of Chemistry [Under review].
- OUSMANA H., EL HMAIDI A., BERRADA M., DAMNATI B., ETEBAAI I. 2016. Application of the self organizing map method for the classification of the environmental quality of the lake systems in The Moroccan Middle Atlas: lakes cases of Ifrah, Iffer and Afourgagh. LARHYSS Journal. Vol. 25 p. 49–65.
- OUSMANA H., EL HMAIDI A., BERRADA M., DAMNATI B., ETABAAI I., ESSAHLAOUI A. 2018. Development of a neural network approach for predicting nitrate and sulfate concentration in three lakes : Ifrah, Iffer and Afourgagh, Middle Atlas Morocco. Moroccan Journal of Chemistry. Vol. 6(2) p. 245–254. DOI 10.48317/ IMIST.PRSM/morjchem-v6i2.5939.
- PREVOST L. 2007. Reconnaissance des formes : Apprentissage et fusion d’information. Habilitation à diriger les recherches [Pattern recognition: Learning and information fusion. Authorization to supervise research]. Paris. Université Pierre et Marie Curie – Paris VI pp. 94. [Access 25.03.2020]. Available at: https:// docplayer.fr/4840446-Reconnaissance-des-formes-apprentissage- et-fusion-d-informations.html
- RIAD S. 2003. Typologie et analyse hydrologique des eaux superficielles à partir de quelques bassins versants représentatifs du Maroc [Typology and hydrological analysis of surface water from a few representative watersheds of Morocco]. Lille. Universite des Scientes et Technologies de Lille, Universite Ibnou Zohr d’Agadir pp. 147. [Access 15.03.2020]. Available at: https://ori-nuxeo.univ- lille1.fr/nuxeo/site/esupversions/e5d351a6-ce4c-4b64-b891- 84d85f3d8f02
- RODIER J., BAZIN C., BROUTIN J.P., CHAMBON P., CHAMPSAUR H., RODI L. 1996. L’analyse de l’eau – eaux naturelle, eaux résiduaires, eau de mer [Water analysis – natural water, waste water, sea water]. 8th ed. Dunod, Paris. ISBN 2100024167 pp. 1383.
- ROSENBLATT F. 1960. Perceptron simulation experiments. Proceedings of the IRE. Vol. 48(3) p. 301–309.
- SU H., CHONG K.T., KUMAR R.R. 2011. Vibration signal analysis for electrical fault detection of induction machine using neural networks. Neural Computing and Applications. Vol. 20(2) p. 183–194. DOI 10.1007/s00521-010-0512-3.
- TALHAOUI A., MANSSOURI I., El HMAIDI A., BERRADA M., MANSSOURI T. 2016. Self-organising topological maps for classification of the Hercynian granitoids from their geochemical characteristics: Case of the Aouli Pluton (High Moulouya, Morocco). 3rd International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM). Abstract book. 19– 23.05.2016 Bodrum, Turkey p. 202.
- TALHAOUI A., MANSSOURI I., EL HMAIDI A., JADDI H., OUSMANA H., BEN DAOUD M. 2020. Assessment of the physico-chemical quality by the SEQ-eau approach of the surface waters of oued Moulouya (NE, Morocco). Journal of Groundwater Science and Engineering, [Under review].
- TAYBI A.F., MABROUKI Y., BERRAHOU A., CHAABANE K. 2016. Évolution spatiotemporelle des paramètres physico-chimiques de la Moulouya [Spatiotemporal evolution of the physico-chemical parameters of Moulouya]. Journal of Materials and Environmental Science. Vol. 7(1) p. 272–284. DOI 10.7202/1044248ar.
- UNCINI A., VECCI L., PIAZZA F. 1998. Learning and approximation capabilities of adaptive Spline activation function neural network. Neural Network. Vol. 11(2) p. 259–270.
- VOYANT C. 2011. Prédiction de séries temporelles de rayonnement solaire global et de production d’énergie photovoltaïque à partir de réseaux de neurones artificiels [Prediction of time series of global solar radiation and photovoltaic energy production using artificial neural networks]. PhD Thesis. Université de Corse-Pascal Paoli, Ecole Doctorale Environnement et Société pp. 257.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4e193ea-6259-4994-94a1-9f31fd883fcc