PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of thermally oxidized titanium based coating

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Aim of the study is to improve the bioactivity of CoCr alloy upon covering the surface with titanium based coating. Design/methodology/approach: CoCr alloy was coated by cold spraying of powder mixture having a composition of 92 wt.%Ti + 8 wt.%Al. Coated samples were thermally oxidized at 600°C for 60 hours. Characterization of the coating was made by X-Ray diffraction analyses, microstructural surveys, cross-section and surface SEM elemental mapping analyses, roughness and hardness measurements. Findings: Results showed that sequential application of cold spray and thermal oxidation processes provided the multi-layered coating consisting of an inner titanium based layer and an outer oxide layer consisted of TiO2 and Al2O3. Thermal oxidation also caused the remarkable increasing in the surface hardness as compared to the as-cold sprayed state. Practical implications: Modifying the surface of CoCr metallic implants for long term success. Originality/value: Producing a multilayer coating on the surface of the CoCr alloy for biomedical application by sequential application of cold spray and thermal oxidation processes is the orginality of the study.
Rocznik
Strony
49--54
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
autor
  • Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
autor
  • Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
autor
  • Department of Materials Science and Engineering, Gebze Technical University, Kocaeli, Turkey
autor
  • Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Turkey
Bibliografia
  • [1] B. C. Carr, T. Goswami, Kneeimplants - Review of models and biomechanics, Materials and Design 30/2 (2009) 398-413.
  • [2] R. Martínez, J.C. Escobedo, D.A. Cortés, G.G. Alves, A.B.R. Linhares, J.M. Granjeiro, M. Pradoe, J.C. Ortiz, J.M. Almanza, E.M. Múzquiz-Ramos, In vitro bioactivity and biocompatibility of a Co-Cr-Mo alloy after heat treatment in contact with different bioactive systems, Ceramics International 39/2 (2013) 2003-2011.
  • [3] L. Ren, K. Yang, Bio-functional Design for Metal Implants, a New Concept for Development of Metallic Biomaterials, Journal of Materials Science and Technology 29/11 (2013) 1005-1010.
  • [4] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomaterialia 8/11 (2012) 3888-3903.
  • [5] V.H. Pham, S.H. Lee, L Yuanlong, H.E. Kim, K.H. Shin, Y.H. Koh, Utility of tantalum (Ta) coating to improve surface hardness in vitro bioactivity and biocompatibility of Co-Cr, Thin Solid Films 536 (2013) 269-274.
  • [6] H. Güleryüz, H. Cimenoglu, Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti-6Al-4V alloy, Biomaterials 25 (2004) 3325-3333.
  • [7] S.K. Yazıcı, F. Muhaffel, M. Baydogan, Effect of incorporating carbon nanotubes into electrolyte on surface morphology of micro arc oxidized Cp-Ti, Applied Surface Science 318 (2014) 10-14.
  • [8] K. Aniołek, M. Kupka, A. Barylski, G. Dercz, Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process ”Applied Surface Science 357 (2015) 1419-1426.
  • [9] H. Çimenoǧlu, M. Gunyuz, G.T. Kose, M. Baydogan, F. Uǧurlu, C. Sener, Micro-arc oxidation of Ti6Al4Vand Ti6Al7Nb alloys for biomedical applications, Materials Characterization 62/3 (2011) 304-311.
  • [10] B. Yang, M. Uchida, H.M. Kim, X. Zhang, T. Kukubo, Preparation of bioactive titanium mal via anodic oxidation treatment, Biomaterials 25 (2004)1003-1010.
  • [11] V.K. Champagne, The Cold Spray Materials Deposition Process Fundamentals and Applications, Woodhead Publishing Limited, England, 2007.
  • [12] H.Y. Lee, S.H. Jung., S.Y. Lee, Y.H. You, K.H. Ko, Correlation Between Al2O3 Particles and Interface ofAl-Al2O3 Coatings by Cold Spray, Applied Surface Science 252 (2004) 1891-1898.
  • [13] M. Grujicic, J.R. Saylor, D.E .Beasley, W.S. De Rosset, D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Applied Surface Science 219 (2005) 211-227.
  • [14] F.P. Novoselovat, R. Morgan, W. O’Neill, Experimental Study of Titanium/Aluminium Deposits Produced by Cold Gas Dynamic Spray, Surface and Coatings Technology 200 (2006) 2775-2778.
  • [15] D.S. Rama Krishna, Y.L. Brama, Y. Sun, Thick rutile layer on titanium for tribological applications, Tribology International 40 (2007) 329-334.
  • [16] Z. Shi, H. Wi, H. Zhang, T. Jin, X. Sun, Q. Zheng, The role of Kirkendall porosity in determining β→δ transformation types in Nb-Ti-Al alloys, International Journal of Refractory Metals and Hard Materials 60(2016) 108-112.
  • [17] S. Ye, H. Hao, W. Mo, K. Yu, L. Liu, C. Deng, P. Yu, Effects of cold compacting pressure on the expansion behavior of Ti-48Al during sintering, Journal of Alloys and Compounds 673 (2016) 399-404.
  • [18] P.A. Dearnley, K.L. Dahm, H. Çimenoglu, The corrosion-wear behaviour of thermally oxidised CP-Ti and Ti-6Al-4V, Wear 256 (2004) 469-479.
  • [19] H. Dong, A. Bloyce, P.H. Morton, T. Bell, Surface engineering to improve tribological performance ofTi-6Al-4V, Surface Engineering 13/5 (1997) 402-406.
  • [20] Z. Ozdemir, A. Ozdemir, G.B. Basim, Application of chemical mechanical polishing process on titanium based implants, Materials Science and Engineering C68 (2016) 383-396.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4e0b449-0639-4288-a3dd-6c2bf3c5d500
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.