PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The dolomite problem : evidence from 3D modeling, XRD and geochemical data of Zechstein reefs (Upper Permian, Germany)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three-dimensional modeling of the limestone and dolomite distribution in an Upper Permian (Zechstein) stromatolite-bryozoan reef, ~500 m in diameter and 35 m thick (77 borehole cores, 172 data points), shows that dolomite occurs as laterally and vertically discontinuous intervals. The prevailing mineral phases are near-stoichiometric dolomite and Mg-free calcite (370 XRD and 274 XRF analyses). Both δ13C and δ18O (526 analyses) show a spread of ~10‰ and co-vary with the mineralogy; the heaviest dolomite and calcite δ13C differ by ~1.5‰. Diagenetic modifications caused by flowing meteoric fluids could account for the observed “inverted J” trend of stable and the radiogenic signature of 87Sr/86Sr (23 analyses), but neither vertical nor horizontal gradients occur in the reef modeled. Because the dolomite geometries are incompatible with those predicted by fluid flow models, and the limestone-dolomite difference in δ13C overlaps estimates of isotope fractionation associated with Mg content, the dolomite studied was a depositional Very High Mg Calcite recrystallized to dolomite in a semi-closed diagenetic system rather than a Low Mg Calcite transformed by a dolomitization process. The isotope pattern suggests biogenic fractionation and/or loss of heavy stable C and O and light Sr isotopes during diagenesis.
Słowa kluczowe
Rocznik
Strony
692--710
Opis fizyczny
Bibliogr. 45 poz., fot., rys., wykr.
Twórcy
  • Technische Universität Clausthal, Department of Petroleum Geology, Leibnizstr. 10, D-38678 Clausthal-Zellerfeld, Germany
Bibliografia
  • 1. Bajnai, D., Fiebig, J., Tomášových, A., Milner Garcia, S., Rollion-Bard, C., Raddatz, J. Löffler, N., Primo-Ramos, C., Brand, U., 2018. Assessing kinetic fractionation in brachiopod calcite using clumped isotopes. Springer Scientific Reports, 8, article number, 533.
  • 2. Banner, J. Hanson, G., 1990. Calculations of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54: 3123-3137.
  • 3. Bathurst, R.G.C., 1971. Carbonate Sediments and Their Diagenesis. Elsevier, Amsterdam.
  • 4. Bishop, J.W., Osleger, D.A., Montańez, I.P., Sumner, D.Y., 2014. Meteoric diagenesis and fluid-rock interaction in the Middle Permian Capitan backreef: Yates Formation, Slaughter Canyon, New Mexico. AAPG Bulletin, 98: 1495-1519.
  • 5. Carmichael, S.K., Ferry, J.M., McDonough, W.F., 2008. Formation of replacement dolomite in the Latemar carbonate buildup, dolomites, northern Italy: part 1. Field relations, mineralogy, and geochemistry. American Journal of Science, 308: 851-884.
  • 6. Clark, D.N.,1980. The diagenesis of Zechstein carbonate sediments. Contributions to Sedimentology, 9: 167-203.
  • 7. Daëron, M., Drysdale, R,N., Peral, M., Huyghe, D., Blamart, D., Coplen, T.B., Lartaud, F., Zanchetta, G., 2019. Most Earth-surface calcites precipitate out of isotopic equilibrium. Nature Communications, 10: 429.
  • 8. Flügel, E., 2000. Microfacies Analysis of Limestones. Springer, Berlin.
  • 9. Gabellone, T., Whitaker, F., 2016. Secular variations in seawater chemistry controlling dolomitization in shallow reflux systems: insights from reactive transport modelling. Sedimentology, 63: 1233-1259.
  • 10. Gischler, E., Swart, P.k., Lomando, A.J., 2009. Stable isotopes of carbon and oxygen in modern sediments of carbonate platforms, barrier reefs, atolls and ramps: patterns and implications. IAS Special Publications, 41: 61-74.
  • 11. Gregg, J.M., Bish, D.L., Kaczmarek, S., Machel, H.G., 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62: 1749-1769.
  • 12. Horita, J., 2013. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures. Geochimica et Cosmochimica Acta, 129: 111-124.
  • 13. Jasionowski, M., Peryt, T.M., Durakiewicz, T., 2014. Polyphase dolomitisation of the Wuchiapingian Zechstein Limestone (Ca1) isolated reefs (Wolsztyn Palaeo-Ridge, Fore-Sudetic Monocline, SW Poland). Geological Quarterly, 58 (3): 503-520.
  • 14. Jimenez-Lopez, C., Romaek, C.S., Caballero, E., 2006. Carbon isotope fractionation in synthetic magnesian calcite. Geochimica et Cosmochimica Acta, 70: 1163-1171.
  • 15. Kaczmarek, S.E, Sibley, D.F., 2014. Direct physical evidence of dolomite recrystallization. Sedimentology, 61: 1862-1882.
  • 16. Kaczmarek, S.E., Gregg, J.M., Bish, D.L., Machel, H.G., Fouke, B.W., 2017. Dolomite, very high-magnesium calcite, and microbes - implications for the microbial model of dolomitization. SEPM Special Publications, 109: 7-20.
  • 17. Kerkmann, K., 1969. Riffe und Algenbänke im Zechstein von Thüringen. Freiberger Forschungshefte, C252: 1-85.
  • 18. Kim, S.T., Mucci, A., Taylor, B.E., 2007. Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75°C: revisited. Chemical Geology, 246: 135-146.
  • 19. Korte, C., Ullmann, C.V., 2016. Permian strontium isotope stratigraphy. Geological Society Special Publications, 450: 105-118.
  • 20. Korte, C., Kozur, H., Bruckschen, P., Veizer, J., 2003. Strontium isotope evolution of of Late Permian and Triassic seawater. Geochmica et Cosmochimica Acta, 67: 47-62.
  • 21. Kroh, A,, Nebelsick J.H., 2010. Echinoderms and Oligo-Miocene carbonate systems: potential applications in sedimentology and environmental reconstruction. IAS Special Publications, 42: 201-228.
  • 22. Lohmann, K.C., 1987. Geochemical patterns of meteoric diagenetic systems and their application to the study of paleokarst. In: Paleokarst (eds. N.P. James and P.W. Choquette): 58-80. Springer, Berlin.
  • 23. Machel, H.G., 2004. Concepts and models of dolomitization: a critical reappraisal. Geological Society Special Publications, 235: 7-63.
  • 24. McConnaughey, T., 1989. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53: 151-162.
  • 25. McConnaughey, T.A., 2003. Sub-equilibrium 18O and 13C levels in biological carbonates: carbonate and kinetic models. Coral Reefs, 22: 316-327.
  • 26. Paul, J., 1980. Upper Permian algal stromatolitic reefs, Harz Mountains (F.R. Germany). Contributions to Sedimentology, 9: 253-268.
  • 27. Paul, J., 1995. Stromatolite reefs of the Upper Permian Zechstein Basin (Central Europe). Facies, 32: 28-31.
  • 28. Peryt, T.M., Raczyński, P., Peryt, D., Chłódek, K., Mikołajewski, Z., 2016. Sedimentary history and biota of the Zechstein Limestone (Permian, Wuchiapingian) of the Jabłonna reef in western Poland. Annales Societatis Geologorum Poloniae, 86: 379-413.
  • 29. Purser, B.H., Tucker, M.E., Zenger, D.H., 1994. Problems, progress and future research concerning dolomites and dolomitization. IAS Special Publications, 21: 3-20.
  • 30. Reijers, T.J.A., 2012. Sedimentology and diagenesis as 'hydrocarbon exploration tools' in the Late Permian Zechstein-2 Carbonate Member (NE Netherlands). Geologos, 18: 163-195.
  • 31. Rosenbaum, J., Sheppard, S.M., 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50: 1147-1150.
  • 32. Schönherr, C., Reuning, L., Hallenberger, M., Lüders, V., Lemmens, L., Biehl, B.C., Lewin, A., Leupold, M., Wimmers, K., Strohmenger, C.J., 2018. Dedolomitization: review and case study of uncommon mesogenetic formation conditions Earth-Science Reviews, 185: 780-805.
  • 33. Searl, A., 1994. Discontinuous solid solution in Ca-rich dolomites: the evidence and implications for the interpretation of dolomite petrographic and geochemical data. IAS Special Publications, 21: 361-376.
  • 34. Smith, D.B., 1981. Bryozoan-algal patch-reefs in the Upper Permian Lower Magnesian Limestone of Yorkshire, north- east England. SEPM Special Publication, 30: 187-202.
  • 35. Swart, P.K., 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology, 62: 1233-1304.
  • 36. Usdowski, E., 1994. Synthesis of dolomite and geochemical implications. IAS Special Publications, 21: 345-360.
  • 37. Vahrenkamp, V.C., Swart, P.K., 1994. Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites. IAS Special Publications, 21: 133-153.
  • 38. Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D., Tien, A.J., 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377: 220-222.
  • 39. Veizer, J., 1983. Chemical diagenesis of carbonates: theory and trace element technique. SEPM Short Course, 10: 3-1-3-100.
  • 40. Warren, J., 2000. Dolomite: occurrence, evolution and economically important associations. Earth-Science Reviews, 52:1-81.
  • 41. Weber, J.N., Raup, D.M., 1968. Comparison of C13/C12 and O18/O16 in skeletal calcite of recent and fossil echinoids. Journal of Paleontology, 42: 37-50.
  • 42. Wilson, E.N., Hardie, L.A., Phillips, O.M., 1990. Dolomitization front geometry, fluid flow pattern, and the origin of massive dolomite: the Triassic Latemar buildup, northern Italy. American Journal of Science, 290: 741-796.
  • 43. Zhang, F., Xu, H., Konishi, H., Roden, E.E., 2010. A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series. American Mineralogist, 95: 1650-1656.
  • 44. Zhang, F., Xu, H., Konishi, H., Shelobolina, E.S., Roden, E.E., 2012a. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite. American Mineralogist, 97: 556-567.
  • 45. Zhang, F., Xu, H., Konishi, H., Kemp, J.M., Roden, E.E., Shen, Z., 2012b. Dissolved sulfide-catalyzed precipitation of disordered dolomite: implications for the formation mechanism of sedimentary dolomite. Geochimica et Cosmochimica Acta, 97: 148-165.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4df662c-747b-4337-bbc9-ab3419b87571
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.