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Abstract
The paper focuses on adapting the random cellular automata (RCA) method concept for the unconstrained grain growth simula-
tion providing digital microstructure morphologies for subsequent multi-scale simulations. First, algorithms for the generation 
of initial RCA cells alignment are developed, and then the influence of cells density in the computational domain on grain 
growth is discussed. Three different approaches are proposed based on the regular, hexagonal, and random cells’ alignment in 
the former case. The importance of cellular automata (CA) cell neighborhood definition on grain growth model predictions is 
also highlighted. As a research outcome, random cellular automata model parameters that can replicate grain growth without 
artifacts are presented. It is identified that the acceptable microstructure morphology of the solid material is obtained when 
a mean number of RCA cells in the investigated neighborhood is higher than ten. 
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1. Introduction

Complex, multi-scale, full-field numerical models often 
make direct use of digital microstructure morphology 
during simulations (Pietrzyk & Madej, 2017; Pietrzyk 
et al., 2014; Roters et al., 2019). Therefore, the gener-
ation of such a digital material representation is of im-
portance (Pietrzyk et al., 2015) and is usually possible 
with both experimental or numerical-based techniques. 
The most straightforward microstructure replication ap-
proaches are based on experimental data (Madej, 2017). 
In that case, the preparation of the digital microstructure 
model is based on metallographic images from light 
or electron microscopy since in that way 2D material 
models are easily created (Liu et al., 2017). For the gen-
eration of 3D representation, a set of serial sectioning 

data can be used (Madej et al., 2018a), but this approach 
requires significant time and resources. Conceptionally 
different techniques utilize X-ray tomography (Pokharel 
et al., 2015), providing precise information about mate-
rial morphology, phases, and even energy accumulation 
in the material. In the latter case, the problem is still 
related to a relatively small volume of the investigated 
sample. Therefore, a series of numerical approaches are 
frequently used as a supplementary method to experi-
mental research because of the aforementioned difficul-
ties. Different numerical approaches for the generation 
of the digital material representation models are avail-
able in the literature, e.g., Monte Carlo method (Maazi 
& Lezzar, 2020), Voronoi tessellation (Falco et al., 
2017), phase field (Tegeler et al., 2017) or cellular au-
tomata (CA) methods (Hajder & Madej, 2020).
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As mentioned earlier, one of the methods that 
allows the digital replication of even highly complex 
heterogeneous microstructures is the cellular autom-
ata approach. The classical and frontal CA variants 
were developed, and they provide possibilities for the 
generation of various microstructure types both in 2D 
and 3D space (Svyetlichnyy, 2013). The classical CA 
grain growth model, is based on a regular fixed space 
with CA cells aligned in the hexagonal-based (Fig. 1a) 
(Owusu et al., 2019), square-based grids (Boguń et al., 
2021) (Fig. 1c), or other different regulars ones like 
circular or octagonal (Fig. 1b). The drawback of this 
classical approach is that the morphology of the grains 
is affected by the CA space isotropic character. When 
random definitions of the CA neighborhood are con-
sidered (Groß et al., 2019), this issue is significantly 
suppressed. However, CA cells regular distribution 
within the computational domain generates another dif-
ficulty when more advanced coupled approaches like 
concurrent cellular automata in finite element mod-
els are considered (Shterenlikht et al., 2018, Szyndler 
& Madej, 2015). In this case, the finite element meshes 
are usually unstructured or even anisotropic, and direct 
data transfer between the CA space and FE mesh is not 
straightforward. This is especially problematic in pre-
dicting more complex microstructure evolution mod-
els, e.g., dynamic recrystallization or fracture, where 
both computational domains undergo shape change due 
to plastic deformation (Li et al., 2016). To eliminate 
these difficulties, a random cellular automata (RCA) 
concept (Fig. 1d) can be used as presented in work by 
Madej et al. (2018b). 

Fig. 1. Cells alignment in the computational domain for 
the classical CA method with hexagonal (a), octagonal (b), 

square grids (c) and random (d) CA method

However, the algorithmic complexity of the ran-
dom CA approach increases with respect to classical 
CA, and also, the model predictions can be signifi-

cantly affected by the setup parameters (e.g., the den-
sity of CA cells, type of neighborhood, neighborhood 
radius etc.), leading to unphysical predictions. There-
fore, developing a simple but computationally effi-
cient grain growth algorithm within the RCA concept 
and further evaluating the role of the setup parameters 
is the current research goal. The knowledge obtained 
will allow for the further application of this concept to 
more complex microstructure evolution models, e.g., 
dynamic recrystallization. In this case, the CA space 
deformation can be captured during the simulations 
and thus overcoming a major limitation of the classi-
cal CA method.

2. Random cellular automata  
grain growth model

In the RCA approach, computations are realized in 
a mesh-free environment within the cloud of CA cells. 
Therefore, each simulation requires an initial distribu-
tion of cells across the computational domain. When 
coupled with other computational techniques such as 
the finite element method, the CA cell positions can be 
obtained directly from the finite element mesh. How-
ever, if stand-alone RCA calculations are investigated, 
then a position of each CA cell has to be generated by 
a dedicated distribution algorithm. The distribution 
pattern of cells is essential and can affect the simula-
tion’ final result, especially the grain boundary shapes. 
Within the work, three different approaches for CA cell 
distribution were investigated: regular, hexagonal, and 
random, as seen in Figure 2. Each CA cell can take two 
states in the model: empty and non-empty. The cell in 
the later state is also identified by an id number, which 
represents its assignment to a particular grain, visual-
ized further by different colors. 

After the initial distribution of CA cells in the 
computational domain and the execution of the nucle-
ation phase (selected number of cells change the state 
to non-empty and unique color is assigned to each of 
them), the grain growth algorithm is initiated. In the 
first step of each iteration, for a selected cell in the state 
empty, all non-empty neighbors are identified accord-
ing to the defined neighborhood type. As mentioned 
in the RCA method, various types of neighborhoods 
can be proposed. However, in each case, the neighbors 
are always determined with respect to the position of 
the investigated CA cell. Besides the classical circular 
neighborhood shape (Fig. 3a), more sophisticated ones 
like elliptical or complex neighborhood shape defini-
tions are also proposed within the work, as seen in Fig-
ure 3b and 3c.

a) b)

c) d)
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a)

 

 b) 

 

c) 

Fig. 2. Different CA cell distribution algorithm outputs: a) regular; b) hexagonal; c) random 
 (white point represents empty cells while colored one new nuclei in the CA space)

a) 

 

b) 

 

c) 

Fig. 3. Different shapes of the RCA neighborhood: a) circular; b) elliptical; c) complex

Then, in the second step, based on one of the 
neighboring ids, a new id for the investigated cell is 
selected, and the cell changes the state to non-empty. 
The algorithm operates until all CA cells change their 
state to non-empty. 

It should be stressed that the presented approach is 
sensitive to evaluating CA neighbors’ order and size of 
applied neighborhood radius, which may lead to the un-
realistic representation of grain morphology. As seen in 
Figure 4a, when first encountered, neighbor id is trans-

ferred to the investigated CA cell then the final micro-
structure is far from expectation. This problem can be 
mostly reduced by the application of different transition 
rules such as those presented in Figure 4b when the most 
common id from all the neighbors is assigned to the in-
vestigated cell. Yet in this case, some problems can still 
appear when a large radius of the neighborhood is select-
ed. During the research, it was identified that to eliminate 
such artifacts, only the id of the closest neighbor should 
be assigned to the investigated CA cell (Fig. 4c).

a)

 

 b)  c)

 
Fig. 4. Effects of different methods for a new id selection for an empty cell: a) the first encountered id; 

b) id most often occurring in the neighborhood; c) id from the closest neighbor
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The other disadvantage of the RCA approach is 
that the evaluation of CA cell along with its neighbor-
hood in subsequent iterations is computationally costly 
because each cell has to be checked against all other 
cells within the computational domain. To decrease the 
time of the neighborhood search, a bounding box algo-
rithm (Walizer & Peters, 2011) that can be easily used 
for various types of neighborhood types was adapted 
for the current work (Fig. 5).

 

a) 

b) 

Fig. 5. Example of the bounding box for circular (a) 
and elliptical (b) neighborhood type

Additionally, to reduce computing times, the only 
interaction between CA cells in the state empty ← 
non-empty is considered. All other interactions of CA 
cells in the following states and configurations: emp-
ty cell ← empty neighbors, non-empty cell ← empty 
neighbors, non-empty cell ← non-empty neighbors are 
neglected as they have no influence on the final results.

Examples of results obtained from the developed 
random cellular automata grain growth algorithm for 
various initial RCA cell distributions are shown in Fig-
ures 6–8. In all case studies, the same number of grain 
nuclei equal to 200 was distributed across the com-
putational domain with one million cells. The physi-
cal size of the investigated microstructures was set to 
100 × 100 µm.

a) 

 
b) 

Fig. 6. Grain growth within the RCA space with  
regular cells distribution after 10 (a) and 31 (b) iterations

a) 

b) 

Fig. 7. Grain growth within the RCA space with  
hexagonal cells distribution after 18 (a) and 64 (b) iterations

a

a

b

b
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a) 

b) 

Fig. 8. Grain growth within the RCA space with  
the random cells distribution after 8 (a) and 30 (b) iterations

As presented, the type of initial cell distribution 
can slightly affect the shape of the growing grains and 
final microstructure morphology. However, in this case, 
the most critical parameter is the neighborhood type 
used during simulation that has a significant impact on 
the shape of growing grains. This is very beneficial in 
some cases, where, e.g., equiaxial grains are not desired, 
and other microstructure morphologies are required for 
numerical simulations, e.g., with elongated grains. In 
such a case, the elliptical neighborhood (Fig. 3b) defi-
nition can be used. The two radii and alignment angle 
describe such a neighborhood to reflect elongation in 
any given direction, as seen in (Figs. 9 and 10). More-
over, during a simulation, the parameters of the neigh-
borhood can be modified, as presented in Figure 11. In 
this case, a random angle of rotation is assigned to in-
vestigated RCA cells at the beginning of each time step, 
and the evolution of grain shapes changes significantly 
as a result.

As pointed out in the RCA method, more complex, 
non-standard neighborhood shapes can also be easily 
incorporated. Examples of numerical simulations with 
a neighborhood definition from Figure 3c are shown in 
Figure 12. 

a)

  

b)  c) 

Fig. 9. Grain growth with the elliptical neighborhood and the radii: a = 0.45 µm, b = 0.225 µm, rotated by 45°, 
 after 10 (a), 15 (b), 40 (c) iterations

a)

  

b) 

 

c) 

Fig. 10. Grain growth with the elliptical neighborhood and the radii: a = 0.45 µm, b = 0.225 µm, without rotation,  
after 10 (a), 15 (b), 36 (c) iterations
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a) 

 

b)

 

 c)

 
Fig. 11. Grain growth with the elliptical neighborhood and the radii: a = 0.45 µm, b = 0.225 µm, with random rotations,  

after 10 (a), 15 (b), 34 (c) iterations

a)

 

 b)

  

c) 

Fig. 12. Grain growth with a custom definition of the neighborhood after 6 (a), 10 (b), and 32 (c) iterations

3. Parametrization of the model

The RCA grain growth algorithm’s simulation setup pa-
rameters compose the number of cells, their spatial dis-
tribution, the type and size of the neighborhood, e.g., the 
radius in a circular type neighborhood. It is worth noting 
that these parameters alone may be misleading. There-
fore, it is worth normalizing them for the sake of the cur-
rent study. Since the cells’ distribution in the simulation 
is random or uniform, determination of the mean density 
ρ– and the mean number of cells N– in the neighborhood 
defined by radius r can be done as follow:

� �
n
s  

(1)

where: n – the overall number of cells in the computa-
tional domain; s – physical space area.

N– = ρ–πr2 (2)

The inappropriate selection of the initial setup 
parameters can affect grain growth, leading to unphys-
ical microstructure morphology of the solid material, 
as seen in Figure 13 for the case of N– = 4.5 and two 
different overall numbers of cells in the computational 
domain (physical space size 100 × 100 µm). 

a) 

b) 

Fig. 13. Simulation for N
–
 = 4.5 and a different number of 

cells in the computational domain: a) 5e5 cells, r = 0.169 µm; 
b) 2.5e6 cells, r = 0.0755 µm
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Therefore, as presented, identifying the proper setup 
parameters is critical for the RCA grain growth predic-
tions. For the unconstrained grain growth, depending on 
N– value, the simulation can provide satisfactory or total-
ly not physical results for the solid material. However, it 
should be pointed out that sometimes the behavior from 
Figure 13 can be valuable, e.g., to reconstruct the mor-
phology of porous sintered microstructure, but this is 
beyond the scope of this paper. To evaluate the proper 
N– value for solid material, a set of simulations with in-
creasing r size (0.27640–1.04366 µm) and a number of 
cells (25,000–175,000 cells) was computed. During each 
simulation, precisely the same physical size of space equal 
to 100 × 100 µm was analyzed, and the same number of 
100 nuclei were distributed in similar physical locations. 
Results from such simulations are presented in Figure 14. 

As can be noticed in Figure 14, when the param-
eter N– is around 1–4, then there are approximately 
1–4 cells on average in the neighborhood, including the 
investigated CA cell. With such density, only a few ini-
tial grains will grow during the simulation. For higher 
values of N– around 6 (Fig. 14), larger grains are formed, 
but there are still some small empty areas between the 
grains. Then, for the value of N– > = 10 (Fig. 14), the 
majority of the space between the grains is filled, the 
black areas are negligible. However, it should also be 
pointed out that, even for a sufficiently large number of 
CA points in the model, there may be situations when 
the black regions remain, even if 100% of cells have as-
signed id and color. This is purely related to the random 
distribution of the CA points in a fixed physical region 
(100 × 100 µm). 

Fig. 14. Comparison of simulation results using increasing cells number from 25,000 to 175,000 with increasing radius values 
from 0.27640 µm to 1.04366 µm
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4. Conclusions

The adaptation of the random cellular automata (RCA) 
method concept for the unconstrained grain growth 
simulation providing digital microstructure morphol-
ogies for subsequent simulations was performed. The 
investigation of the model setup parameters on the 
final results in the form of digital microstructure mor-
phologies was performed and delivered the following 
conclusions: 

 – Various CA cell alignments, including fully ran-
dom, can be used during grain growth simulations. 
The fully random CA cell distribution is important 
as such a model can be directly linked with un-
structured finite element meshes during coupled 
CA-FE calculations. 

 – The assumptions of the RCA approach ensure 
that even complex types of user-defined neigh-
borhoods can be used during the simulations, 

which increases the model flexibility in applica-
tion to the generation of various microstructure 
morphologies. 

The selection of initial parameters is of importance 
to provide the required digital morphology. For circu-
lar neighborhood and small value of N–, only a small 
amount of cells during simulation can obtain an id 
number and represent the grain. The acceptable micro-
structure morphology of the solid material is obtained 
with the N– > 10. At the same time, intermediate N– val-
ues can be used to generate digital microstructures of, 
e.g., some porous materials. 
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