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Minimization of the peak tangential stresses around a single hole in an
infinite 2D elastic plate under remote pure shear and a given hole-induced strain
energy level is considered as a free-shape optimization problem under a physical
constraint. It is solved by combining a genetic algorithm with the almost analytical,
and hence highly accurate stress-strain solver for any finitely parameterized family
of closed curves. The results obtained in wide ranges of the governing parameters
are detailed and discussed. They may be applicable to the optimal holes design in
constructive elements and dilute perforated structures.
The current analysis extends the author’s previous publications, which were focused
on the unconstrained shape optimization within the same setup.
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1. Background and motivation

Despite intensive studies carried out over the last decades, the
problem of diminishing the weakening effect of construction holes in a flat elas-
tic plate remains an object of much attention in engineering the optimal design.
Various strengthening technologies, such as auxiliary unloading holes, reinforce-
ment rings, and others, are known, each posing its own elastostatic problem. The
proper shaping of holes, which may significantly improve the stress-strain state
of perforated plates, is of particular assistance here. This optimization scheme
is all the more promising as the hole area is usually much more important than
its shape, which thus permits certain design freedom. For example, suppose the
infinite plate has only a single traction-free hole and is loaded by remote pure
shear. Though relatively simple, the considered setup is more challenging than
the bulk-dominating load case, where the shape optimization problem is elliptic
and permits a fully analytical 1-scale solution. This feature holds even for multi-
ple interacting holes or foreign elastic inclusions at various geometries, including
simply and doubly periodic structures (the equistress shapes – ESS, see [1] and
references therein).
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Quantitatively, the stress state of the plate is assessed by any of three inter-
related criteria:

(A) the specific (per unit area of the hole) energy increment ∆W brought
into a given outer stress field;

(B) the peak value K of the induced hoop stresses σθθ around the hole and;
(C) the stresses variation along the shape. Remarkably, no stress concentra-

tions occur along the boundary in the ideal case of zero variation (a constant
stress distribution). This relatively new assessment was advanced in [2]. The rig-
orous definition of the variation of a function on an interval is given in Section 2.

Interestingly and importantly for further analysis, the ESS provide the global
minima for all three criteria simultaneously:

(1.1) min ∆W ⇐⇒ minK ⇐⇒ σθθ = const on the ESS.

At shear loading, the ellipticity is no longer the case, and hence the ESS ana-
logues simply do not exist. For this reason, the interrelations between the above
criteria remain unsolved so far. Because of their analytical complexity, these can
be studied only numerically.

Here, we address a non-trivial and challenging but also fascinating problem
of numerically finding the optimal dependence between the local (B) and overall
(A) quantities of the stress field

(1.2) K(∆W )→ min

around the stress-minimizing hole under remote shear. The hoop stresses vari-
ation (criterion C) remains outside the process and is analyzed a posteriori as
a byproduct of the K minimization.

Any numerical optimization process includes an iteration scheme and a direct
problem solver (DPS) repetitively used over various hole shapes. Both are of great
importance for converging to the true optimum.

In this way, the main numerical difficulty is to provide the greatest possible
accuracy of which the DPS is capable. Indeed, unlike two others, the stress peak
value criterion (or stress concentration factor, SCF) is of local rather than integral
nature and so is much more troublesome to achieve with high precision. To over-
come this difficulty, we employ the almost analytical and very accurate K-solver
proposed in [3] and subsequently used in solving other single hole elastostatic
problems [4, 5].

Crucial here is that this DPS works equally well for any hole shape and remote
load. Hence, it can be effectively embedded into a compact genetic algorithm
(GA) engine for iterative searching of theK minimum at a given energy level ∆W
with no prior gradient information required. Additionally, the GA is enhanced
in efficiency and accuracy by the time-saving parametrization of a vast searching
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space. For concreteness, we also assume that the hole possesses a p-fold rotational
symmetry with p ≥ 4.

The current study logically continues the author’s previous paper [3] in which
the global K minimization without presetting the energy threshold ∆W is nu-
merically performed and analyzed for only p = 4 (a square-symmetric hole).

Our contribution here consists of:
(i) the numerical implementation of the above-sketched optimization tool to

K minimization problem (1.2) in dependence on the energy level for representa-
tive intervals of the governing parameters ∆W and p;

(ii) obtaining a variety of numerical results, which turn out to be drastically
different from those for the bi-axial case. They provide quantitative insight into
the interrelation between the load-induced energy and stress peaks in free bound-
ary optimization of 2D elastic structures, thus giving the exact lower bound on
K(∆W ), which can be interpreted as the attainable dilute limit of the 1-scale
perforated structures.

The remainder of this paper is organized as follows. For reader convenience,
Section 2 summarizes the analytical basics required for further development.
Section 3 sketches the fast and stable direct solver for evaluating the peak stress
around an arbitrarily shaped hole. In terms of these tools, Section 4 formulates
the exact shape optimization problem of numerically minimizingK under a lower
constraint on a given energy level ∆W . The computational optimization scheme
based on the genetic algorithm technique is briefly given in Section 5. Simulation
settings and numerical results are presented and discussed in Section 6. Closing
remarks are offered in Section 7.

2. Basic assumptions and governing equations

The setup in Fig. 1 is considered. Let an infinite thin plate be weakened by
a hole with the p-fold rotationally symmetric boundary Lp enclosing the origin
of coordinates in the plane E of a complex variable z = x + iy ∈ E. The curve
Lp divides the plane in the hole region S1 of a finite area f1 and the unbounded
region S2 = E \ S1 filled with an isotropic and linearly elastic phase. The plane
is also remotely loaded by uniform non-tangential stresses

(2.1) σ∞xx = P, σ∞yy = Q, σ∞xy = 0,

while the hole’s boundary is taken traction-free.
The load-induced stresses in the closed domain S2 + Lp are governed by the

real-valued biharmonic Airy function. Though useful as a theoretical tool, it
becomes ineffective in computing local stress and strain fields. Far more promis-
ing is the complex variable approach of equivalently replacing the Airy function
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Fig. 1. An infinite plate with a traction-free hole under uniform stresses at infinity.
The cases P = Q and P = −Q correspond to bulk and shear loading, respectively. The

piecewise-smooth boundary of the hole has a p-fold rotational symmetry about the origin.

with a pair of complex-valued holomorphic functions Φ0(z), Φ0(z) (the Kolosov–
Muskhelishvili potentials (KMP); see [6, 7]) interlinked along the material in-
terface through given loading conditions. The resulting boundary value problem
for them is then formulated and solved (analytically or numerically) using the
complex variable machinery. To facilitate further derivations, we parameterize
the shape Lp with a real angular variable θ along an auxiliary unit circle γ, also
centered in the same origin:

(2.2) Lp = ωp(ξ), ξ = exp iθ ∈ γ, ξ = ξ−1 |ξ| = 1, θ ∈ [0, 2π],

where ωp(ζ) is the univalent (ω′(ζ) 6= 0) finite-term analytic function conformally
mapping the exterior Σ : |ζ| ≥ 1 of γ onto the considered elastic domain S +Lp
with p-fold rotational symmetry:

Σ + γ −−−−−→
ωp(ζ)

S + Lp, ζ = ρ exp iθ, ρ ≥ 1,(2.3a)

ωp(e
iλpζ) = eiλpωp(ζ) : ωp(ζ) = ζ +

M∑
m=1

dkζ
1−mp.(2.3b)

Here M ≥ 1 is an integer and λp = 2π/p is the angular period of Lp. Without
loss of generality, let Lp be placed symmetrically to the x-axis and, hence, the
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coefficients {dm} are real. As design variables, they offer substantial numerical
advantages detailed in [3]. For clarity, we display them here.
• They are “naturally” ordered, in the sense that the higher the coefficient,

the lesser its impact on the inclusion shape. Indeed, from the geometrical point
of view, the high-order mapping coefficients are mainly responsible for forming
large curvature isolated shape points that are unlikely to appear in the SCF
minimization process.
• They fall into the successfully narrowing intervals

(2.4) − 1√
mp− 1

≤ dm ≤
1√

mp− 1
, m = 1, 2, . . . ,

following from non-negativity of the area f1 inside γ [8]

(2.5) f1 = π
(
1− (p− 1)2d2

1 − (2p− 1)2d2
2 − . . .

)
≥ 0.

This means that just a few first coefficients {dk} comprise by (2.4) a practically
representative search pool ΠM of shapes – in contrast to, say, a necessarily dense
representation through their nodal points.
• This on-circle parametrization is also useful technically since the following

identities hold on γ, in contrast to any other shape

(2.6) ξ = ξ−1,

∫
γ

ξ
m
ξndξ =

∫
γ

ξn−mdξ = 2πiδm−n,1, ξ ∈ γ,

where δi,j is the Kronecker delta, and a bar indicates complex conjugation. More-
over, the mutual orthogonality of (2.6) makes the stress-strain computations
more manageable by applying the residues technique [8].

The transformed KMP in the auxiliary domain Σ + γ are analytic functions
with far-field asymptotics (2.1):

Φ0(ζ) = B+Φ(ζ), Ψ0(ζ) = Γ+Ψ(ζ); ζ ∈ Σ+γ, Φ(ζ),Ψ(ζ) = O(|ζ|−2),(2.7a)
4B = Tr{σ∞} = Q+P, 2Γ = Dev{σ∞} = Q−P, ImB, Im Γ = 0,(2.7b)

and convergent series expansions

(2.8) Φ(ζ) =

∞∑
k=2

akζ
−k, Ψ(ζ) =

∞∑
k=2

bkζ
−k, ζ ∈ Σ + γ.

The first order items ∼ζ−1 in (2.8) must be zero to match the static state con-
ditions [7].

Note that two basic cases of bulk (B = 1, Γ = 0) and shear (B = 0, Γ = 1)
loadings correspond to isotopic and square antisymmetric (deviatoric) far stress
field, respectively.
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The hole-induced stresses are linearly related to Φ0(ζ),Ψ0(ζ) through the
commonly-known formulae [7], which are not displayed here to save room.

Further, the zero tractions on Lp : σρρ(ξ) + iσρθ(ξ) ≡ 0 imply the following
boundary condition on γ for the functions Φ(ζ),Ψ(ζ)

(2.9) − 2

ξ2
ω′(ξ)[ReΦ(ξ) +B] + ω(ξ)Φ′(ξ) + Γω′(ξ) = −ω′(ξ)Ψ(ξ), ξ ∈ γ.

The terms in (2.9) are rearranged specifically for later use.
We also note that far shear yields a zero average of the hoop stresses over γ

(2.10) σθθ =
1

2π

∫
γ

σθθ(θ)dθ = 0.

At any given shape Lp, identities (2.7), (2.9) comprise together the direct boun-
dary-value problem for Φ(ξ),Ψ(ξ). Specifically, the quantities of our interest are
expressed through only the first potential Φ(ζ) (see, for instance, [9])

(2.11) ∆W =
4πa2

f1
; K = max |σθθ(ξ)| = 4 max |B + Re Φ(ξ)|, 0 ≤ ξ ≤ π,

where a2 is the second-order residue of Φ(ζ) at ζ = 0

(2.12) Φ(ζ) =
a2

ζ2
+ o(|ζ|−2).

Further, by the theory of functions of a real variable the hoop stresses variation
is defined through the non-negative sums [10], (see also [2])

(2.13) V [σθθ(Lp)] = sup

n∑
i=0

|σθθ(θi+1)− σθθ(θi)| ≥ 0, {θi} ∈ [0, η],

where the supremum is taken over all possible partitions of Lp with an arbitrary
system of points θ0, θ1 . . . , θn ordered by a chosen direction of traversing the
irreducible half-period η ≤ π of the angular stress distribution. For evident
reason, we use only one such set in numerically evaluating the variations.

These are nontrivially bounded below [10] as

(2.14) V [σθθ] ≥ max(σθθ(θ))−min(σθθ(θ)), θ ∈ [0, η],

where the equal sign is true for only monotonic functions. Given this, we intro-
duce the more suitable relative parameter

(2.15) ρ =
max(σθθ(θ))−min(σθθ(θ))

V [σθθ]
, 0 < ρ ≤ 1,

which is valid for any non-constant distribution V [σθθ] > 0.
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In particular, for a circular hole (t ∈ L, |t|2 = R2, ω(ξ) = ξ) under unit
shear, it is found analytically [7] that

(2.16) Φ(ξ) =
R2

ξ2
, Ψ(ξ) = 3

R4

ξ4
, a2 = R2, f1 = πR2, η = π

and hence

(2.17) ∆W = 4, σθθ(ξ) = 4 cos 2θ =⇒ K = 4, V [σθθ] = 4, ρ = 1.

The relation ρ = 1 holds also for the antisymmetric stress distribution which
changes the sign at the diagonal points θ = ±π/4 and θ = ±3π/4 while keeping
its modulus to hold (2.10) (the modular equistress principle)

(2.18) |σθθ(ξ)| = const, ξ ∈ γ.

Physically this corresponds to a step-wise distribution composed of four equal-
length segments alternating between tensile and compressive uniform stresses
of the same magnitude. Equation (2.18) is applied by [11] as a prerequisite
for numerically identifying the energy-minimizing hole under remote shear at
p = 4. The resultant suboptimal hole shapes look like a square with slightly
rounded sides and pronounced corner angles close to the critical Carothers value
≈ 102.6◦ [12], which provides no singularity at passing through the diagonals.

Expectedly, such a combination of flattening and local jumping in the trend
of the stress distribution is also observed in the current K(∆W ) numerical
minimization (Section 6) even though with unequal segments lengths and ten-
sile/compressive stress levels.

3. One-potential direct solver

The KMP are uniquely solvable [7], at least for an arbitrary piecewise smooth
hole shape which is the only factor influencing the problem’s numerical severity.
In actuality, however, there is a practical approach allowing to find Φ(ζ) and
Ψ(ζ) almost analytically and in tandem rather than in parallel for any finite-
term mapping (2.3b).

Indeed, Eq. (2.9) states that its left side is the boundary value of a func-
tion holomorphic outside the unit circle γ and vanishing at infinity which thus
has no non-negative powers of ζ as, in fact, taken in the Laurent series (2.8)
for Ψ(ξ). On the other hand, the substitution of the first expansion from (2.8)
and (2.3b) into (2.9) does produce these powers with the coefficients composed
of ak, dk and integers. The reason is the conjugation operation over ζ : ξk = ξ−k,
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k = ±1,±2, . . . . By necessarily equating them to zero, one gets an infinite system
of linear algebraic equations [13] for m = 0, 1, . . .

am+2 −
m∑
k=1

(m− k + 1)dm−k+1ak − (m+ 1)
∞∑
k=1

dm+k+1ak = Am,(3.1a)

A0 = 2B − Γ, A1 = 0, Am = −2B(m+ 1)dm+1, m ≥ 2(3.1b)

in the unknowns {ak} only, with no coefficients of Ψ(ξ). When needed, these can
be restored afterward through (2.9) and (2.6).

The first sum in (3.1a) is omitted for m = 0, 1. In the case under study
(B = 0,Γ = 1), the right-hand side of only the first equation (m = 0) is non-
zero as well as the energy ∆W from (2.11) and hence the leading coefficient a2.
The latter implies that the half-period of the stress distribution η = π for any odd
and η = π/2 for any even p ≥ 4. Higher coefficients and corresponding equations
may partially vanish due to the interplay between the shear antisymmetry and
adopted p-symmetry of the hole shape.

Remarkably, for any M -term finite mapping (dk = 0, ∀k > M), the system
(3.1) also shrinks to a finite numberN of equations in the first non-zero unknowns
ak, k = 1, N while the infinite remainder of them in the unknowns ak, k > N is
next summed up analytically by a finite differences technique [3]. This possibility
is a crucial point for further analysis. The finite system size N is defined by the
lower of load and shape rotational symmetries. The bulk (isotropic) load always
implies that N = M . At the same time, antisymmetric shear gives N = M for
p = 4 and N = 2M for p > 4. For simplicity, we also assume here that p is even
and equal at least to 4 to vanish all the odd coefficients {ak}.

The net expression for the first potential Φ(ξ) reads [3]

(3.2) Φ(ξ) =
RN (ξ)

ξω′(ξ)
, ξ ∈ γ,

where RN (ξ) is a polynomial of degree N in ξ

(3.3) RN (ξ) = rNξ
N + rN−1ξ

N−1 + · · ·+ r0,

with the coefficients

(3.4) r0 = a1 = 0, r1 = a2, rm = am+1 −
m∑
k=2

(−1)kkdkam+k+1, m ≥ 2.

In other words, Eqs. (3.2)–(3.4) are exact up to negligible errors caused by nu-
merically solving the well-defined system in the N first non-zero coefficients {ak}
at moderate values of N .
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Note that just this (almost) analytical solution of the direct problem within
the GA process provides the numerical effectiveness of the SCF optimization in
the finiteM -dimensional search space ΠM of the design variables {d1, d2, . . . , dM}
all of them being bounded by the intervals (2.4).

4. Problem formulation

We aim to numerically minimize the stress concentration factor K over a
wide search pool ΠM of shapes under a given degree of the shape’s rotational
symmetry p and energy decrement ∆W : K = K(∆W ) in a representative inter-
val of their values. Especially significant is that these two enter the optimization
search quite differently. While p is fixed at once for the whole search, ∆W is com-
puted separately for each hole shape within {Lp}. Because of this, it is desirable
to hold a chosen value ∆W ∗ with a one-sided inequality constraint,

(4.1) ∆W ≥ ∆W ∗,

which forces GA to search for the SCF closest to the level ∆W = ∆W ∗, provided
the function K(∆W ) increases monotonically with ∆W .

This intuitively correct presumption is a posteriori justified by the numerical
results obtained at discrete values of p for dense sets of values on representative
intervals of ∆W as witnessed in Section 6.

With these preliminaries, we are now in a position to quantitatively rephrase
the 2D shape optimization problem at hand in the above-defined terms:

Given a unit shear load at infinity and the rotational symmetry degree to
find, over all admissible set of the design variables {dm}, the p-symmetrical hole
shape Lp ∈ ΠM which minimizes the stress concentration factor K under con-
straint (4.1),

(4.2) K(Lp,M,∆W ∗) −−−−−−−−→
{dm}∈ΠM

min(p,M,∆W ∗).

This formulation is justified if and only if the criterion K converges rapidly to
stable values with increasing M , and that is the case. In practice, our numerical
simulations (Section 6) for p = 4 and p = 6 ÷ 16 become stable already at
M = 6÷ 8 with the system size N = 6÷ 8 and N = 12÷ 16, respectively.

5. Computational optimization scheme

In general, there are two substantially different iterative strategies to choose
from: gradient and non-gradient (stochastic) ones, each having its pros and cons,
as detailed in [14] specifically for the structural optimization problems.
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Here the shape optimization problem with a lower-bound constraint on the
energy level ∆W is solved by minimizing the K criterion over an M -parameter
set of closed curves. In principle, the single truncation approach (3.1)–(3.4) ex-
plicitly provides all the information required by standard gradient descent (di-
rectional) techniques. However, this results in too cumbersome analytical ex-
pressions and time-consuming calculations. A good alternative is a gradientless
and hence more flexible genetic algorithm, which loosely mimics, both in the
concept and in the terms, the natural selection principle of survival of the fittest
borrowed from evolutionary biology.

Devised in the pioneering works [15] and [16], the GA finds wide application in
engineering. Its current state of the art is given, for instance, in [17]. More specific
information is detailed in the previous author’s paper [3], where the basic GA
is precisely adjusted and implemented in the closely related problem to identify
the stress-minimizing hole under remote shear with no lower constraint (4.1) on
the energy.

The search starts with an initial population of randomly generated binary
strings (chromosomes), each encoding an individual shape through M mapping
coefficients {dk}. They are further subject to 1-point crossover, jump/creep mu-
tations, and the elitist technique performed with pre-specified probabilities. The
computed SCF of an individual is taken as its fitness so that the best individuals
with the minimal fitness values have the highest chance of surviving through
successive generations. Given this, wherever the constraint (4.1) is violated, the
corresponding shape obtains a penalized fitness, and the GA process takes the
next candidate. The idea is to make the shape non-competitive, assigning the
penalty as the squared violation (∆W ∗ − ∆W )2 multiplied by a huge positive
constant.

We use the same mechanism to weed out unfeasible self-intersecting shapes
which may appear at each step since inequalities (2.4) are not sufficient to guar-
antee their absence. Unfortunately, no conditions in {dk} terms to detect self-
intersections are known thus far. Therefore, we check each decoded curve for
possibly breaking the monotonicity,

(5.1)
d argω(θ)

dθ
≥ 0, θ ∈ [0;λp],

which provides the more restrictive shape property of star-shapeness because,
physically, only star-shaped holes are promising for K-minimization. All op-
erations are performed with double-precision arithmetic (16 digits) to ensure
a high-resolution search of the global optimum.

This process is governed by several control parameters that dictate its perfor-
mance. Here, the parameters tuning is of lesser importance due to the relatively
small problem size, as detailed at the end of the previous section. For this reason,
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we use the parameters’ values found in the unconstrained shape optimization [3].
They are not displayed here for brevity.

To ensure the accuracy of the results, they were computed several times,
randomly starting each GA process and stopping it after a sufficiently large
number of iterations when there is no more variation in the results.

6. Numerical simulations

To provide a reference point for the principal computations, we first find the
global minimum of either of the two shape-dependent parameters K and ∆W
with no lower bound (4.1) on its complement for different values of p (Table 1).
The data for p = 4 are taken from [3]. The following points are noteworthy:
• The K- and ∆W -minimizing shapes differ from a circle with corresponding

values of interest (2.17) only when p = 4 or 8 as computed here in the interval
p ∈ [4; 24]. This result is partly given in [3] (and for p = 6 conjectured in [18]).
The case p = 8 has not yet been analyzed in the literature.
• The only non-trivial starting cases p = 4 and (to a lesser extent) p = 8

are associated with markedly reduced K-criterion values than their energy mini-
mum counterparts. The corresponding rows in Table 1 show that the gains are
(1 − 2.77936/3.243467) = 14.3% and (1 − 3.70496/4.0) = 7.3%, respectively,
obtained at a slight sacrifice in the energy

(6.1) δ =
∆W (Kmin)

∆Wmin
− 1 < 0.01%.

This difference, even if very small, is detected owing to highly accurate compu-
tations with double precision arithmetic rather than resulted from round-off or
discretization errors.

Table 1. The global (unconstrained) minima of K and ∆W , together with related
quantities for different degrees p of rotational symmetry of the hole.

K-optimization ∆W -optimization
p Kmin ∆W (Kmin) ρ(Kmin) K(∆Wmin) ∆Wmin ρ(∆Wmin)

4 2.77936 3.71770 0.97288 3.243467 3.71438 0.72777
6 4.0 4.0 1.0 4.0 4.0 1.0
8 3.70496 4.00187 0.98456 4.0 4.0 1.0

>8 4.0 4.0 1.0 4.0 4.0 1.0

The K-minimizing hole shapes and the resultant hoop stress distributions
for p = 4 and 8 are shown in Fig 2. In contrast to the square-like hole at p = 4,
the octagonally symmetric K-optimal shape is close to a circle (the dashed line
in the upper inset of the figure) with slightly marked corners at θ1 = 22.5◦ and
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Fig. 2. The upper-right quarter of the unconstrained K-minimizing hole shapes (up) and
the corresponding stress distributions (down) for p = 4 (1) and p = 8 (2). The

energy-minimizing case for p = 4 (3) is also added for comparison.
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θ2 = 67.5◦. The corresponding optimal stress distribution consists of two strongly
flattened parts, θ ∈ [0;≈θ1], and θ ∈ [≈θ2; 90◦], with a gently curved line between
them. Note that this is not an odd function about the point 45◦ as would be
dictated by the modular equistress relations (2.18) for p = 4. Indeed, we have
σθθ(0

◦) = 3.70496 6= −σθθ(90◦) = 3.57359 and σθθ(45◦) = −0.06567 6= 0 (the
bottom inset) – though the stresses average (2.10) is invariably zero as required
by the shear load anti-symmetry for any p. For p = 4, we further contrast the
discrepancy between K- and ∆W -optimal stress distributions. It is concentrated
near a more pronounced angular point of the ∆W -optimal shape at θ = π/4,
where the local stress peak is formed to result in a modest lowering of the energy.
On the other hand, the K stresses present a finite-term (and hence smoothed)
approximation to a step function (2.18) with no peaks allowed.

The main result is summarized graphically in Fig. 3 where the dependence
of K on the energy threshold is compared for different p. For easier compari-
son, we replace the absolute energy increment ∆W by the relative parameter
w = ∆W/∆Wmin(p) : Kmin(∆W ) ⇒ Kmin(w), where ∆Wmin(p) is the global
energy minimum presented in the right-hand part of Table 1 so that w ≥ 1
uniformly for any p. Since, because of (6.1), Kmin(1 + δ) < Kmin(1) for p = 4
and 8, both curves first decline (as shown in an enlarged view at the bottom),
and after fast reaching the nearby minimum, begin to rise with different slopes.
The case p = 4 is seen to yield the smallest Kmin at the same value of w, thanks
to the mutual conformity of the load and hole rotational properties. This con-
clusion is quantitatively exemplified by comparing the K-minimization results
at a particular threshold of w = 1.05. These are summarized in Table 2 and
partially visualized in Fig. 4. For p = 4, the best K value is attended by a flat-
tened (and hence more favorable) stress distribution with ρ very close to unity,
unlike the oscillating distributions at p = 6 and 8 (Fig. 4, down) with much
smaller ρ’s. Note also that even at this relatively small energy constraint, the
K-optimal shapes (Fig. 4, up) look markedly different from their counterparts
under unconstrained optimization at w = 1 (Fig. 2, up). Whereas at p = 6 and 8,

Table 2. The constrained minima of K together with related quantities at the
energy threshold w = 1.05 for different values of p

p Kmin ∆W (Kmin) ρ(Kmin)

4 3.27608 3.90010 0.99872
6 5.55670 4.2 0.46222
8 6.08143 4.2 0.33691
10 7.42158 4.2 0.33356
12 8.17853 4.2 0.24977
16 9.16804 4.2 0.16708
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the shapes tend to form p-periodic bulges, the square symmetric hole boundary
becomes close to a circle. Its further evolution versus the increasing values of
w is displayed in Fig. 5 together with the corresponding stress distributions.

Fig. 3. The min Kmin(w) dependence for different degrees p of the hole’s rotational
symmetry. An enlarged view of the dotted square near w = 1 is given in the below figure.
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Fig. 4. The upper-right quarter of the bounded K-minimizing hole shapes (up) and the
corresponding stress distributions (down) at the energy threshold w = 1.05 for p = 4, 6, 8 (the

solid, dashed, and dotted line, respectively).
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Fig. 5. The upper-right quarter of the bounded K-minimizing hole shapes (up) and the
corresponding stress distributions (down) for p = 4 and increasing values of w > 1:

1 – (w = 1.13, Kmin = 3.669, ρ = 0.984), 2 – (1.50, 4.688, 0.984), 3 – (2.60, 6.643, 0.972),
4 – (5.0, 12.079, 0.978).
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The attention is drawn to the resultant smoothly-shaped “arms” along the load
axes, gradually lengthening to match the growing constraint w. Expectedly, the
K-optimal stress distributions tend to be almost piecewise constant, smoothly
truncated across the arm’s vertices, with the relative variation ρ remaining close
to unity in a wide interval of the energy values. Thus, we conclude cautiously
that the step-like distribution pattern and minK are positively correlated at the
same w. It makes the results obtained more meaningful for engineering practice.

7. Conclusions

The paper presented a GA-based study of a rather challenging 2D shape
optimization problem of minimizing the stresses around a hole in a shear-loaded
plane with a one-sided constraint on the induced energy. This was achieved in
a complex-variable framework by combining the highly accurate direct problem
solver with the flexible and efficient shape parametrization. For clarity, we repeat
here the essential points of the approach.

First, the parameterizing function (2.3b) is taken to contain only a small finite
number M of terms used as the design variables. This assumption is physically
motivated and numerically justified because their optimal values invariably fall
well inside the allowed intervals (2.4).

Further, the fitness of each candidate from the searching space is calculated
by the high-precision finite algorithm with no numerical integration or other
approximative operations.

Finally, the conditional K(w)-minimization problem is solved numerically for
different values of p by the easy to adapt and to use GA searching engine, which
straightforwardly incorporates the energy constraint.

The results so obtained provide detailed information regarding to the inter-
action between the SCF and energy levels far beyond the global minimum case
considered in [11], [19], and [3].

Nevertheless, it has to be stressed the direct solver used here works only for
a single hole and may not be extended to several interacting ones where other
approaches [20, 21] are successfully used instead.
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