PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing domestic factors determining water consumption in a semi-arid area (Sedrata City) using artificial neural networks and principal component analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The growing demand for fresh water and its scarcity are the major problems encountered in semi-arid cities. Two different techniques have been used to assess the main determinants of domestic water in the Sedrata City, North-East Algeria: principal component analysis (PCA) and artificial neural networks (ANNs). To create the ANNs models based on the PCA, twelve explanatory variables are initially investigated, of which nine are socio-economic parameters and three physical characteristics of building units. Two optimum ANNs models have been selected where correlation coefficients equal to 0.99 in training, testing and validation phases. In addition, results demonstrate that the combination of socio-economic parameters with physical characteristics of building units enhances the assessment of household water consumption.
Wydawca
Rocznik
Tom
Strony
219--228
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • University of Badji Mokhtar, Faculty of Earth Sciences, Laboratory of water resource and sustainable development, BP 12 / 23000 Annaba, Algeria
  • University of Badji Mokhtar, Faculty of Earth Sciences, Laboratory of water resource and sustainable development, BP 12 / 23000 Annaba, Algeria
  • University of Badji Mokhtar, Faculty of Earth Sciences, Laboratory of natural resource and development, Annaba, Algeria
Bibliografia
  • ADAMOWSKI J., CHAN H.F., PRASHER S.O., OZGA-ZIELINSKI B., SLIUSARIEVA A. 2012. Comparison of multiple linear and non-linear regression, Autoregressive Integrated Moving Average, Artificial Neural Network, and Wavelet Artificial Neural Network Methods for Urban Water Demand Forecasting in Montreal, Canada. Water Resources Research. Vol. 48. Iss. 1, W01528 p. 1–14. DOI 10.1029/ 2010WR009945.
  • ADE 2017. Water authority of Souk-Ahras Province. Algérienne des eaux. [Access 15.04.2020]. Available at: https://www.ade.dz/index.php/espace-client/services
  • AGAMI N., ATIYA A., SALEH M., EL-SHISHINY H. 2009. A neural network based dynamic forecasting model for trend impact analysis. Technological Forecasting and Social Change. Vol. 76. Iss. 7 p. 952–962. DOI 10.1016/j.techfore.2008.12.004.
  • AGGRAWAL R., SONG Y. 1997. Artificial neural networks in power systems. Part 1. General introduction to neural computing. Power Engineering Journal. Vol. 11. Iss. 3 p. 129–134. DOI 10.1049/pe:19970306.
  • AL-ZAHRANI M.A., ABO-MONASAR A. 2015. Urban residential water demand prediction based on artificial neural networks and time series models. Water Resources Management. Vol. 29 p. 3651–3662. DOI 10.1007/s11269-015-1021-z.
  • ARBUÉS F., VILLANUA I., BARBERAN R. 2010. Household size and residential water demand: An empirical approach. The Australian Journal of Agricultural and Resource Economics. Vol. 54. Iss. 1 p. 61–80. DOI 10.1111/j.1467-8489.2009. 00479.x.
  • Aquacraft Inc. 2015. Application of end use study data for development of residential demand models [online] pp. 3. [Access 15.04.2020]. Available at: http://www.aquacraft.com/wp-content/uploads/2015/09/Residential-Models.pdf
  • BALLING Jr. R.C., GOBER P., JONES N. 2008. Sensitivity of residential water consumption to variations in climate: An intraurban analysis of Phoenix, Arizona. Water Resources Research. Vol. 44. Iss. 10, W10401 p. 1–11 DOI 10.1029/ 2007WR006722.
  • BEAL C., STEWART R.A., HUANG T.T., REY E. 2011. SEQ residential end use study. Water (Australia). Vol. 38. Iss. 1 p. 80–84.
  • BENNETT C., STEWART R.A., BEAL C.D. 2012. ANN-Based residential water end-use demand forecasting model. Expert Systems with Application. Vol. 40. Iss. 4 p. 1014–1023. DOI 10.1016/j.eswa.2012.08.012.
  • FAN L., GAI L., TONG Y., LI R. 2017. Urban water consumption and its influencing factors in China: Evidence from 286 cities. Journal of Cleaner Production. Vol. 166 p. 124–133. DOI 10.1016/j.jclepro.2017.08.044.
  • FIELDING K.S., RUSSELL S., SPINKS A., MANKAD A. 2012. Determinants of household water conservation: The role of demographic, infrastructure, behavior and psychosocial variables. Water Resources Research. Vol. 48. DOI 10.1029/2012 WR012398.
  • GATO-TRINIDAD S., JAYASURIYA N., ROBERTS P. 2011. Understanding urban residential end uses of water. Water Science and Technology. Vol. 64. Iss. 1 p. 36–43. DOI 10.2166/ wst.2011.436.
  • GHIASSI M., FA’AL F., ABRISHAMCHI A. 2017. large metropolitan water demand forecasting using DAN2, FTDNN, and KNN Models: A case study of the city of Tehran, Iran. Urban Water Journal. Vol. 14. Iss. 6 p 655–659. DOI 10.1080/ 1573062X.2016.1223858.
  • GRAFTON R.Q., WARD M.B., TO H., KOMPAS T. 2011. Determinants of residential water consumption: Evidence and analysis from a 10-country household survey. Water Resources Research. Vol. 47. Iss. 8. DOI 10.1029/ 2010WR009685.
  • HAQUE MD M., EGODAWATTA P., RAHMAN A., GOONETILLEKE A. 2015. Assessing the significance of climate and community factors on urban water demand. International Journal of Sustainable Built Environment. Vol. 4. Iss. 2 p. 222–230. DOI 10.1016/j.ijsbe.2015.11.001.
  • HOUSE-PETERS L.A., CHANG H. 2011. Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resources Research. Vol. 47. Iss. 5, W05401 p. 1–15. DOI 10.1029/2010WR009624.
  • HUSSIEN W.A., MEMON F.A., SAVIC D.A. 2016. Assessing and modelling the influence of household characteristics on per capita water consumption. Water Resources Management. Vol. 30 p. 2931–2955. DOI 10.1007/s11269-016-1314-x.
  • KENNEY D.S., GOEMANS C., KLEIN R., LOWREY J., REIDY K. 2008. Residential water demand management: Lessons from Aurora, Colorado. Journal of the American Water Resources Association. Vol. 44. Iss. 1 p. 192–207. DOI 10.1111/j.1752-1688.2007.00147.x.
  • LIPPMANN R.P. 1987. An introduction to computing with neural nets. IEEE ASSP Magazine. Vol. 4. Iss. 2 p. 4–22. DOI 10.1109/MASSP.1987.1165576.
  • MAKKI A.A., STEWART R.A., PANUWATWANICH K., BEAL C. 2011. Revealing the determinants of shower water end use consumption: Enabling better targeted urban water conservation strategies. Journal of Cleaner Production. Vol. 60 p. 129–146. DOI 10.1016/j.jclepro.2011.08.007.
  • MAKKI A.A., STEWART R.A., BEAL C.D., PANUWATWANICH K. 2015. Novel bottom-up urban water demand forecasting model: Revealing the determinants, drivers and predictors of residential indoor end-use consumption. Resources, Conservation and Recycling. Vol. 95 p. 15–37. DOI 10.1016/j.rescon-rec.2014.11.009.
  • MATOS C., TEIXEIRA C.A., BENTO R., VARAJÃO J., BENTES I. 2014. An exploratory study on the influence of socio-demographic characteristics on water end uses inside buildings. Science of The Total Environment. Vol. 466–467 p. 467–474. DOI 10.1016/j.scitotenv.2013.07.036.
  • MCCULLOCH W.S., PITTS W.H. 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. No. 5 p. 115–133. DOI 10.1007/BF02459570.
  • MU X., WHITTINGTON D., BRISCOE J. 1990. Modeling village water demand behavior: A discrete choice approach. Water Resources Research. Vol. 26. Iss. 4 p. 521–529. DOI 10.1029/ WR026i004p00521.
  • NAUGES C., WHITTINGTON D. 2009. estimation of water demand in developing countries: An overview. The World Bank Research Observer. Vol. 25. Iss. 2 p. 263–294. DOI 10.1093/wbro/ lkp016.
  • PAHLAVAN R., OMID M., AKRAM A. 2012. Application of data envelopment analysis for performance assessment and energy efficiency improvement opportunities in greenhouses cucumber production. Journal of Agricultural Science and Technology. Vol. 14 p. 1465–1475.
  • PULIDO-CALVO, J.R., LOPEZ-LUQUE R., GUTIERREZ-ESTRADA J.C. 2003. Demand forecasting for irrigation water distribution systems. Journal of Irrigation and Drainage Engineering. Vol. 129. Iss. 6 p. 422–431. DOI 10.1061/(ASCE)0733-9437 (2003)129.
  • RANGEL H.R., PUIG V., FARIAS R.L., FLORES J.J. 2017. Short-term demand forecast using a bank of neural network models trained using genetic algorithms for the optimal management of drinking water networks. Journal of Hydroinformatics. Vol. 19. Iss. 1 p. 1–16. DOI 10.2166/hydro.2016.199.
  • SAKAA B., CHAFFAI H., HANI A. 2020. ANNs approach to identify water demand drivers for Saf-Saf river basin. Journal of Applied Water Engineering and Research. Vol. 8. Iss. 1 p. 44–54. DOI 10.1080/23249676.2020.1719220.
  • SONMEZ A.Y., KALE S., OZDEMIR R.C., KADAK A.E. 2018. An adaptive neuro-fuzzy inference system (ANFIS) to predict of cadmium (Cd) concentrations in the Filyos River, Turkey. Turkish Journal of Fisheries and Aquatic Sciences. Vol. 18. Iss. 12 p. 1333–1343. DOI 10.4194/1303-2712-v18_12_01.
  • TIWARI M.K., ADAMOWSKI J. 2013. Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resources Research. Vol. 49. Iss. 10 p. 6486–6507. DOI 10.1002/wrcr.20517.
  • TIWARI M., ADAMOWSKI J., ADAMOWSKI K. 2016. Water demand forecasting using extreme learning machines. Journal of Water and Land Development. No. 28 p. 37–52. DOI 10.1515/jwld-2016-0004.
  • UNESCO 2012. Global water resources under increasing pressure from rapidly growing demands and climate change, according to new UN World Water Development Report [online]. [Access 15.04.2020]. Available at: http://www.unesco.org/new/en/media-services/single-view/news/global_water_resources_under_increasing_pres-sure_from_rapidl/
  • WENTZ E.A., WILLS A.J., KIM W.K., MYINT S.W., GOBER P., BALLING JR R.C. 2014. Factors influencing water consumption in multifamily housing in Tempe, Arizona. The Professional Geographer. Vol. 66. Iss. p. 501–510. DOI 10.1080/ 00330124.2013.805627.
  • WILLIS R., STEWART R.A., PANUWATWANICH K., CAPATI B., GIURCO D. 2009. Gold coast domestic water end use study. Water. Vol. 36. Iss. 6 p. 79–85.
  • XUE P., HONG T., DONG B., MAK C. 2017. A preliminary investigation of water usage behavior in single-family homes. Building Simulation. Vol. 10 p. 949–962. DOI 10.1007/ s12273-017-0387-7.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4d7c4e3-5624-45bd-ab38-431aa65b7f13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.