Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, hydrochar using to modified nickel aluminum layered double hydroxide (hydrochar@NiAl LDH). The collected data by XRD indicate that 2θ of material at 11.38°, 22.90°, 35.20°, and 61.60°. The FTIR spectrum of hydrochar@NiAl LDH at wavenumber 3448, 1650, 1500–1600, 1348, 1056, and 500–800 cm-1. NiAl LDH and hydrochar have surface areas of 3.288 m2/g and 7.366 m2/g, respectively. The precursors enhance the composite’s surface area by 11.879 m2/g. NiAl LDH, hydrochar, and hydrochar@NiAl LDH have optimal pH values of 3, 6, and 6 respectively. The adsorption process is determined by the kinetic model of pseudo-second order and the model of Freundlich isotherm. NiAl LDH, hydrochar, and hydrochar@NiAl LDH had respective maximum adsorption capacities of 25.445, 21.008, and 25.773 mg/g. The increase in regeneration cycles decreases the percentage of adsorbed.
Wydawca
Rocznik
Tom
Strony
275--281
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
autor
- Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
- Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
autor
- Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
autor
- Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
autor
- Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
autor
- Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
- Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
Bibliografia
- 1. Ahmad, N., Wijaya, A., Salasia Fitri, E., SuryaniArsyad, F., Mohadi, R., Lesbani, A. 2022. Catalytic Oxidative Desulfurization of Dibenzothiophene by Composites Based Ni/Al-Oxide. In Science and Technology Indonesia, 7(3). https://doi.org/11.26554/sti.2222.7.3.385–391
- 2. Ahmadi, S., Igwegbe, C.A. 2018. Adsorptive removal of phenol and aniline by modified bentonite: adsorption isotherm and kinetics study. Applied Water Science, 8(6). https://doi.org/10.1007/s13201–018–0826–3
- 3. Al-Ghouti, M.A., Sayma, J., Munira, N., Mohamed, D., Da’na, D.A., Qiblawey, H., Alkhouzaam, A. 2022. Effective removal of phenol from wastewater using a hybrid process of graphene oxide adsorption and UV-irradiation. Environmental Technology and Innovation, 27. https://doi.org/10.1016/j.eti.2022.102525
- 4. Alves, D.C.S., Gonçalves, J.O., Coseglio, B.B., Burgo, T.A.L., Dotto, G.L., Pinto, L.A.A., Cadaval, T.R.S. 2019. Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes. Journal of Environmental Chemical Engineering, 7(6). https://doi.org/10.1016/j.jece.2019.103460
- 5. Asnaoui, H., Dehmani, Y., Khalis, M., Hachem, E.K. 2020. Adsorption of phenol from aqueous solutions by Na–bentonite: kinetic, equilibrium and thermodynamic studies. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2020.1763328
- 6. Barbusinski, K., Salwiczek, S., Paszewska, A. 2016. The Use of Chitosan For Removing Selected Pollutants From Water And Wastewater – Short Review. Architecture, Civil Engineering, Environment, 9, 107–115. https://doi.org/10.21307/acee-2016–026
- 7. Bouteraa, S., Saiah, F.B.D., Hamouda, S., Bettahar, N. 2020. Zn-M-CO3 layered double hydroxides (M=Fe, Cr, or Al): Synthesis, characterization, and removal of aqueous indigo carmine. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 43–54. https://doi.org/10.9767/bcrec.15.1.5053.43–54
- 8. Cao, Y., Wang, Y., Zhou, F., Huang, J., Xu, M. 2022. Acylamino-functionalized hyper-cross-linked polymers for efficient adsorption removal of phenol in aqueous solution. Separation and Purification Technology, 303, 122229. https://doi.org/10.1016/j.seppur.2022.122229
- 9. da Silva, M.C.F., Schnorr, C., Lütke, S.F., Knani, S., Nascimento, V.X., Lima, É.C., Thue, P.S., Vieillard, J., Silva, L.F.O., Dotto, G.L. 2022. KOH activated carbons from Brazil nut shell: Preparation, characterization, and their application in phenol adsorption. Chemical Engineering Research and Design, 187, 387–396. https://doi.org/10.1016/j.cherd.2022.09.012
- 10. de Farias, M.B., Prediger, P., Vieira, M.G.A. 2022. Conventional and green-synthesized nanomaterials applied for the adsorption and/or degradation of phenol: A recent overview. In Journal of Cleaner Production. Elsevier Ltd, 367. https://doi.org/10.1016/j.jclepro.2022.132980
- 11. de La Luz-Asunción, M., Sánchez-Mendieta, V., Martínez-Hernández, A.L., Castaño, V.M., Velasco-Santos, C. 2015. Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: Kinetic and equilibrium studies. Journal of Nanomaterials, 2015. https://doi.org/10.1155/2015/405036
- 12. Dehmani, Y., Alrashdi, A.A., Lgaz, H., Lamhasni, T., Abouarnadasse, S., Chung, I.M. 2020. Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): Mechanism exploration from both experimental and theoretical studies. Arabian Journal of Chemistry, 13(5), 5474–5486. https://doi.org/10.1016/j.arabjc.2020.03.026
- 13. Dehmani, Y., Khalki, O., El, Mezougane, H., Abouarnadasse, S. 2021. Comparative study on adsorption of cationic dyes and phenol by natural clays. Chemical Data Collections, 33. https://doi.org/10.1016/j.cdc.2021.100674
- 14. Dehmani, Y., Lgaz, H., Alrashdi, A.A., Lamhasni, T., Abouarnadasse, S., Chung, I.M. 2021. Phenol adsorption mechanism on the zinc oxide surface: Experimental, cluster DFT calculations, and molecular dynamics simulations. Journal of Molecular Liquids, 324. https://doi.org/10.1016/j.molliq.2020.114993
- 15. Gao, W., Lin, Z., Chen, H., Yan, S., Zhu, H., Zhang, H., Sun, H., Zhang, S., Zhang, S., Wu, Y. 2022. Roles of graphitization degree and surface functional groups of N-doped activated biochar for phenol adsorption. Journal of Analytical and Applied Pyrolysis, 167, 105700. https://doi.org/10.1016/j.jaap.2022.105700
- 16. Gupta, A., Balomajumder, C. 2015. Simultaneous removal of Cr(VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass. Journal of Water Process Engineering, 6, 1–10. https://doi.org/10.1016/j.jwpe.2015.02.004
- 17.Jain, M., Khan, S.A., Sahoo, A., Dubey, P., Pant, K.K., Ziora, Z.M., Blaskovich, M.A.T. 2022. Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Bioresource Technology, 352. https://doi.org/10.1016/j.biortech.2022.127030
- 18.Juleanti, N., Normah, N., Siregar, P.M.S.B.N., Wijaya, A., Palapa, N.R., Taher, T., Hidayati, N., Mohadi, R., Lesbani, A. 2022. Comparison of the Adsorption Ability of MgAl-HC, CaAl-HC, and ZaAl-HC Composite Materials Based on Duku Peel Hydrochar in Adsorption of Direct Green Anionic Dyes. Indonesian Journal of Chemistry, 22(1), 192–204. https://doi.org/10.22146/ijc.68719
- 19. Khan, D., Kuntail, J., Sinha, I. 2022. Mechanism of phenol and p-nitrophenol adsorption on kaolinite surface in aqueous medium: A molecular dynamics study. Journal of Molecular Graphics and Modelling, 116. https://doi.org/10.1016/j.jmgm.2022.108251
- 20. Lesbani, A., Palapa, N.R., Sayeri, R.J., Taher, T., Hidayati, N. 2021. High reusability of NiAl LDH/biochar composite in the removal methylene blue from aqueous solution. Indonesian Journal of Chemistry, 21(2), 421–434. https://doi.org/10.22146/ijc.56955
- 21. Liu, X., Tu, Y., Liu, S., Liu, K., Zhang, L., Li, G., Xu, Z. 2021. Adsorption of ammonia nitrogen and phenol onto the lignite surface: An experimental and molecular dynamics simulation study. Journal of Hazardous Materials, 416. https://doi.org/10.1016/j.jhazmat.2021.125966
- 22. Lupa, L., Cocheci, L., Pode, R., Hulka, I. 2018. Phenol adsorption using Aliquat 336 functionalized Zn-Al layered double hydroxide. Separation and Purification Technology, 196, 82–95. https://doi.org/10.1016/j.seppur.2017.10.003
- 23. Mandal, A., Das, S.K. 2019. Phenol adsorption from wastewater using clarified sludge from basic oxygen furnace. Journal of Environmental Chemical Engineering, 7(4). https://doi.org/10.1016/j.jece.2019.103259
- 24. Qu, Y., Qin, L., Liu, X., Yang, Y. 2022. Magnetic Fe3O4/ZIF-8 composite as an effective and recyclable adsorbent for phenol adsorption from wastewater. Separation and Purification Technology, 294. https://doi.org/10.1016/j.seppur.2022.121169
- 25. Ruan, X., Chen, Y., Chen, H., Qian, G., Frost, R.L. 2016. Sorption behavior of methyl orange from aqueous solution on organic matter and reduced graphene oxides modified Ni-Cr layered double hydroxides. Chemical Engineering Journal, 297, 295–303. https://doi.org/10.1016/j.cej.2016.01.041
- 26. Sathya Priya, D., Sureshkumar, M.V. 2020. Synthesis of Borassus flabellifer fruit husk activated carbon filter for phenol removal from wastewater. International Journal of Environmental Science and Technology, 17(2), 829–842. https://doi.org/10.1007/s13762–019–02325–3
- 27. Seedao, C., Rachphirom, T., Phiromchoei, M., Jangiam, W. (n.d.). Anionic Dye Adsorption from Aqueous Solutions by Chitosan Coated Luffa Fibers.
- 28. Taher, T., Putra, R., Rahayu Palapa, N., Lesbani, A. 2021. Preparation of magnetite-nanoparticle decorated NiFe layered double hydroxide and its adsorption performance for congo red dye removal. Chemical Physics Letters, 777(February), 138712. https://doi.org/10.1016/j.cplett.2021.138712
- 29. Wang, P., Geng, X., Luo, L., Liu, Y., Eglitis, R.I., Wang, X. 2022. The adsorption behavior of phenol on the surface of 1D/2D M@MoS2 (M = Co and Rh) for hydrodeoxidation reaction: Insights from theoretical investigations. Applied Surface Science, 601. https://doi.org/10.1016/j.apsusc.2022.154242
- 30. Xie, B., Qin, J., Wang, S., Li, X., Sun, H., Chen, W. 2020. Adsorption of Phenol on Commercial Activated Carbons: Modelling and Interpretation. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17030789
- 31. Zhang, J., Liu, N., Gong, H., Chen, Q., Liu, H. 2022. Hydroxyl-functionalized hypercrosslinked polymers with ultrafast adsorption rate as an efficient adsorbent for phenol removal. Microporous and Mesoporous Materials, 336. https://doi.org/10.1016/j.micromeso.2022.111836
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4d23881-07fc-4f98-b07e-0e99e83bdd55