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Abstract. The notion of Witt ring is fundamental in bilinear algebra. Automorphisms of 

Witt rings have been investigated until recent years. In this paper we consider Witt rings 

which are direct products of finite number of other Witt rings. We shall present a necessary 

condition in order to group of all strong automorphisms of direct product of Witt rings be 

a direct product of groups of strong automorphisms of Witt rings which are factors in the 

direct product. Subsequently, there are considered some examples of Witt rings, where 

described condition is fulfilled. 

 

Keywords: Witt rings, quaternionic structures, the strong automorphisms 

Introduction 

A fundamental notion in the algebraic theory of quadratic forms is the ring  

introduced in [1], called now the Witt ring of quadratic forms. The structure and 

properties of Witt ring �(�) of quadratic forms over the field � depend strongly 

on the field � of coefficients of forms. In particular there is an essential difference 

between Witt rings over the fields of characteristic ≠ 2 and Witt rings of the field 

of characteristic = 2. 

One of the interesting problems about Witt rings is the description of their 

automorphisms. However, the task is difficult because of mentioned various struc-

tures of Witt rings. Therefore, there is no formula describing all automorphisms of 

all Witt rings. The descriptions of automorphisms of Witt rings known in the litera-

ture apply to separate classes of Witt rings (see for example [2-4]). 

In this paper we consider abstract Witt rings introduced by M. Marshall in [5] as 

an abstract equivalent of well-known Witt rings of quadratic forms, which have the 

same algebraic properties as the original objects. We use well-known one-to-one 

correspondence between Witt rings and quaternionic structures in order to search 

for strong automorphisms of direct product of Witt rings. Let � be a Witt ring 

which is a direct product of finite number of Witt rings ��, 1 ≤ � ≤ �. As the main 

result, we present a necessary condition in order to group of all strong auto-
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morphisms of direct product of Witt rings to be a direct product of groups of strong 

automorphisms of Witt rings that are factors in the direct product, i.e. 

�����	 ≅ 
���(��)
�

���
 

Finally, we present some examples of Witt rings which are direct products of 

Witt rings where the above formula is true.  

1. Preliminaries 

1.1. Witt rings, quaternionic structures and their automorphisms 

Following Marshall (cf. [5]) a Witt ring is said to be a pair � = ��,�	, where � is a commutative ring with unity 1 and � is a subgroup of the multiplicative 

group �∗ which has exponent 2 and contains distinguished element −1 (where, as 

usual in a ring, –  denotes the additive inverse of ). Furthermore, the following 

axioms hold: 

W1: � generates � additively. 

W 2: The following Arason-Pfister property holds for � = 1 and � = 2: 

If  = �� + �� + ⋯ + �� ∈ ��, where � denotes the fundamental ideal of � gener-

ated by elements  = � + �, �,� ∈ �, � < 2�, then  = 0. 

W3: If �� + �� + ⋯ + �� = �� + �� + ⋯ + �� and � ≥ 3, then there exist �,�, ��, … , �� ∈ � such that �� + ⋯ + �� = � + �� + ⋯ + ��, �� + � = �� + � 
(and, hence, �� + ⋯ + �� = � + �� + ⋯ + ��). 

We will say that � is a (strong) isomorphism of Witt rings �� = (��,��) and �� = (��,��) if �:�� → �� is a ring isomorphism such that ����	 = ��.  
A strong automorphism of Witt ring � is just isomorphism of � onto itself. 

A useful tool for searching of automorphisms of Witt rings is a notion of 

quaternionic structure. Let G be a group of exponent 2, i.e. �� = 1 for all � ∈ � 

with distinguished element −1 ∈ � and let us denote –� = −1 ⋅ �. Let � be the set 

with distinguished element �	and let �:� × � → � be a surjective map. The triplet 

(�,�,�) is called a quaternionic structure, if for every �,�, �, � ∈ � the map � 
fulfills: 

Q1: ���,�	 = �(�,�) 

Q2: ���, −�	 = � 

Q3: ���,�	 = ���, �	 ⇒ ���,��	 = � 

Q4: If ���,�	 = �(�, �), then there exists such � ∈ � that ���,�	 = �(�, �) and ���,�	 = �(�, �). 
Two quaternionic structures ���,��,��	 and  ���,��,��	 are isomorphic if there 

exists a group isomorphism �:�� → �� such that ��−1�	 = −1� and ����,�	 =

= �� ⇔ ������	,���	� = �� for all �,� ∈ ��. By automorphism of a quaternionic 

structure (�,�, �) we understand any isomorphism �: ��,�,�	 → (�,�,�). 
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According to [5, Theorem 4.5] the category of Witt rings and the category of 

quaternionic structures are naturally equivalent. In particular for every Witt ring � = ��,�	 there exists a quaternionic structure (�,�,�) associated to it and con-

versely for given quaternionic structure (�,�,�) one can construct related Witt 

ring � = ��,�	. This fact makes it possible to use quaternionic structures in order 

to study properties of Witt rings when it is convenient. It was shown in [6] that 

strong automorphisms of Witt ring � = ��,�	 and automorphisms of quaternionic 

structure (�,�,�) associated to � are in one-to-one correspondence and suitable 

groups of automorphisms are isomorphic, i.e. �����	 ≅ ���(�,�,�). 
Let ��,�,�	 be a quaternionic structure. A (quadratic) form of dimension � ≥ 1 over � is n-tuple � = (��, … ,��), where ��, … ,�� ∈ �. A form � of dimen-

sion 2 is called binary form. Two forms of dimension � are called equivalent (or 

isometric) if: 

(1) � = 1, ��	 ≅ ��	 ⟺ � = � 
(2) � = 2, ��,�	 ≅ ��,�	 ⟺ �� = ��  and  ���,�	 = �(�,�) 
(3) � > 2,  ���, … ,��	 ≅ ���, … ,��	 ⟺ ∃�,�, ��, … , �� ∈ � such that 

 ���, … , ��	 ≅ ��, ��, … , ��	, ���,�	 ≅ ���,�	 and ���, … ,��	 ≅ 
 ≅ ��, ��, … , ��	. 

The form �1,��	⊗ ⋯ ⊗ �1,��	, where ��, … ,�� ∈ �, � > 0 is called 

n-fold Pfister form. We say that form 	� represents element � ∈ � if there exist ��, … ,�� ∈ �, such that � ≅ (�,��, …��). We denote the set of all elements repre- 

sented by form � (value set of the form �) by ���	. We have � ≅ � ⇒ ���	 = �(�). 
We shall often use the following formula proved by M. Marshall ([5, p. 74]) 

 � ∈ ��1, −�	 ⟺ ���,�	 = � (1.1) 

The above formula gives us the new tool for searching automorphisms of quater-

nionic structures. We can convert the second condition of definition of auto- 

morphisms of quaternionic structures ���, �	 = � ⇔ ���(�),�(�)	 = � by �(�(1,�) = �(1,���	) for all � ∈ � and use it when it is convenient. 

Let � = ��,�	 be a Witt ring and let (�,�,�) be the quaternionic structure  

associated to it. Then two forms ���, … ,��	 and ���, … ,��	 are equivalent if �� + �� + ⋯ + �� = �� + �� + ⋯ + �� in � and  = �. In many situations it is 

more convenient to use forms instead of elements of ring �. 

1.2. Direct products and group rings 

Let (�� ,�� ,��), 1 ≤ � ≤ � be quaternionic structures such that −1� ∈ ��, �� ∈ ��. Let us accept the following notation: � ≔ �� × ⋯ × ��, � ≔ �� × ⋯ ×�_�, −1 ≔ −1� × ⋯ × −1�, � ≔ �� × ⋯ × �� and let �:� × � → � be defined 

by ��!��, … , ��", !��, … ,��"	 = [�����,��	, … ,�����,��	]. Then the triplet 

(�,�,�) is a quaternionic structure called the product of quaternionic structures 
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(�� ,�� ,��), 1 ≤ � ≤ � (cf. [5], Chapter 5, §4) and denoted by ∏ (�� ,�� ,��)�
���  

or ���,��,��	⊓ ⋯ ⊓ (�� ,�� ,��). 
Moreover, using (1.1) we can write the value set of form (1,�) for any � ∈ � 

by ��1,�	 = ��!1�, … , 1�", !��, … ,��"	 = ���1�,��	 × ⋯ × ��(1�,��). 
Let ���,��	, … , (�� ,��) be Witt rings. Let � denote the subring of the ring  �� × ⋯ × �� generated additively by � = �� × ⋯ × ��. The pair � = (�,�) is 

called a direct product of Witt rings ���,��	… ��� ,��	 and denoted by ∏ (�� ,��)�
���  or ���,��	⊓ ⋯ ⊓ ��� ,��	. 
Of course the quaternionic structure (�,�,�) associated to the direct product ∏ (�� ,��)�

���  is isomorphic to the product ∏ (�� ,�� ,��)�
���  of quaternionic struc-

tures associated to Witt rings ��� ,��	. 
Let �	 = (�	,�	) be a Witt ring. Let � denotes the group ring �[Δ]	of the 

group Δ with coefficients in the ring � and let � = {��: � ∈ �	,� ∈ Δ}. Then � = ��,�	 is a Witt ring called group Witt ring ([5, Proposition 5.16]). The group � should be denoted by �	Δ since it is a subset of �	[Δ]. In order to make notation 

more clear we will use in the sequel notation �′ × Δ and an element �� we will 

denote by [�, �]. 
According to [5], every element in the set $ ∈ �\(�	 × {1
}) fulfills ��1,$	 = 

= 	 {1,$} ([5, Chapter 5, §8]). Therefore if $ = [�, 1
] ∈ �′ × Δ, then ��1,$	 =
= 	�	�1	,�	 × %1
& and if $ = !�, �" ∈ �′ × Δ, � ≠ 1
, then	��1,$	 = {1,$}. 

1.3. Automorphisms of direct products of Witt rings and associated 

quaternionic structures 

In this section we shall describe some conditions that allow one to find out for 

which Witt rings the group of strong automorphisms of their direct product equals 

to the direct product of groups of strong automorphisms of Witt rings being the 

factors. 

Let us first recall a simple fact about automorphisms of quaternionic structures. 

Let '(�) denotes the set of all permutations of �-element set, i.e. the set of all 

bijections of the set {1, … ,�} onto itself. 

 

Lemma 1.1. Let ��,�,�	 ≔ ∏ (�(,�(�
��� ,�)) be a product of � copies of a quater-

nionic structure (�(,�( ,�)) (n-th power of (�(,�( ,�))). For every system of automor-

phisms ��, … ,�� ∈ ���(�(,�( ,�)) and for every permutation * ∈ '(�) a map �:� → � defined by ��!��, … ,��"	 ≔ [��������, … ,��������] is an automor-

phism of quaternionic structure ��,�,�	. 
 

Proof. See [2, Proposition 2.1].∎ 

 

Let � = ∏ (�� ,�� ,��)�
��� . Let us denote the subgroup %1&× ⋯ × %1&× �� × 

× 	 %1&× ⋯ × %1& of the group � = �� × ⋯ × �� by ��	 , where 1 ≤ � ≤ �. We will 
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say that an automorphism of the group � preserves the factors of the product ∏ (�� ,�� ,��)�
���  if for all � ∈ {1, … ,�} there exists � ∈ {1, … ,�} such that �(��� ) = ���. 

 

Lemma 1.2. Let 	�,�,�
� be �-th power of (�,�,�). If any automorphism of the 

quaternionic structure 	�,�,�
� preserves the factors of the product 	�,�,�
�, 

then 

��		�,�,�
�
 ≅ ���	�,�,�
�� ⋉ �(�). 

Proof. Assume that ��,��, … ,�� ∈ ��(	�,�,�
) and � ∈ �(�). Let �	���, … ,���
 = [�������	�
�, … ,�������	�
�] for all ���, … ,��� ∈ ��. By 

Lemma 1.1 � is an automorphism of quaternionic structure 	�,�,�
�. We define 

a map Φ: ���	�,�,�
�� ⋉ �	�
 → ��		�,�,�
�
 by Φ�	���, … ,���,�
� ≔ �. 

In order to prove that Φ is a group homomorphism we compare 

Φ�	���, … ,���,�
 ∗ (���, … , ���, β)� and Φ	���, … ,���,�) ∘ Φ(���, … , ���, β
 for 

all ���, … ,��� ∈ ��. By definition of multiplication in semi-direct product of 

groups we get 

Φ���� ∘ ����	�
, … ,�� ∘ ����	�
�,� ∘ �����, … ,��� = 

= [�� ∘ ����	�
��(�∘�)��	�
�, … ,�� ∘ ����	�
��(�∘�)��	�
�]. 

On the other hand 

Φ	���, … ,���,�) ∘ Φ(���, … , ���, β
���, … ,���= 

= Φ	���, … ,���,�
��������	�
�, … , �������	�
�� = 

= ��� �����	�
 ���������	�
�� , … ,�� �����	�
 ���������	�
��� = 

= ��� ∘ ����	�
��(�∘�)��	�
�, … ,�� ∘ ����	�
��(�∘�)��	�
�� 
as in previous calculation. It proves that Φ is a group homomorphism. 

By hypothesis a permutation � ∈ �	�
 determines a map ��	�
:�� → ��	�
,  � = 1, … ,�. Let  �:�� → � be the map such that  �	���, …���
 = �� and let !�:� → �� be the map such that !�	�
 = �1, … ,�, … ,1�, where � is on �-th position. 

Then it is easy to show that  �	�
 ∘ ��	�
 ∘ !�:� → � is an automorphism of 

quaternionic structure 	�,�,�
. With above notation we have �	���, … ,���
 = 

= 	 [�������	�
�, … ,�������	�
�] for all ���, … ,��� ∈ �� × ⋯ × ��, � = 1, …�. 

It follows that Φ is a surjection.  

Assume that 	���, … ,���,�
 ∈ ���	�,�, �
�� and that Φ	���, … ,���,�
 is 

identity. Then for all ���, … ,��� ∈ �� we have 

 Φ	���, … ,���,�
���, … ,��� = ���, … ,��� (1.2) 

Suppose that � is not identity permutation, hence there exists � ∈ {1, …�} such that ���	�
 ≠ �. Let ���	�
 = �. Let us consider a sequence ���, … ,��� such that 
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�� ≠ 1 and �� = 1 for all other indices � ∈ {1,…�}. By (1.2) we get ����������� =
= 	��  for all 1 ≤ � ≤ �. Thus ������ = �� = 1 since � ≠ 	. That contradicts to the 
choice of element 
��, … ,���. That means � must be identity permutation. Thus ����� = �� for all 1 ≤ � ≤ �, hence � is the identity map and it follows that Φ is 

injection. 

That ends the proof that Φ is an isomorphism of the groups ����,�,���� and �����,�,���� ⋉ �(�).∎ 

 

Now we can study more generally a product of quaternionic structures fulfilling 

properties described in Lemma 1.2 and its group of automorphisms. 

 

Theorem 1.3. Let � = {��,��,���, … �� ,�� ,���} be a set of quaternionic struc-

tures such that every automorphism of the quaternionic structure ∏ �� ,�� ,����
�	�  

preserves the factors of the product. Let ��, …�
 of cardinality ��, … ,�
, respec-

tively, be the classes of partition of the set � with respect to isomorphism of 

quaternionic structures and assume (without loss of generality) that �� ,�� ,��� are 

representatives of classes �� for all � = 1,… ,�. Then 

��� � � �,�,��
��,�,�∈�

� ≅ �������� ,�� ,������ ⋉ �����


�	�

 

Proof. If � is an automorphism of the quaternionic structure ∏ �,�,����,�,�∈� , 

then by hypothesis of Lemma 1.2 for every � = 1,… ,� there exists 	 ∈ {1,… ,�} 
such that ���

�� = ��� and �� ,�� ,��� ∈ �� . It follows that  
��� � � �,�,��

��,�,�∈�

� ≅ ����� � �,�, ��
��,�,�∈��

�


�	�

 

Now by the previous theorem we get 

��� � � �,�,��
��,�,�∈��

� ≅ ������ ,�� ,������ ⋉ ���� 
which finishes the proof.∎ 
 
The following corollary is a direct consequence of theorem 1.3. 

 

Theorem 1.4. Let (�,�,�) be a finite product of pairwise non-isomorphic quater- 

nionic structures ��,��,���, … , ��,�� ,��� such that every automorphism of the 

quaternionic structure ∏ �� ,�� ,����
�	�  preserves the factors of the product. Then 
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�����,�,�	 ≅ ∏ ������ ,�� ,��	�
��� . 

One can translate the expressions in Theorems 1.3 and 1.4 to the language of 

Witt rings. 

2. Strong automorphisms of direct products of group Witt rings 

2.1. Witt rings of local types 

Our first application of the results of previous section concerns Witt rings of local 

type. Recall that a quaternionic structure (�,�,�) is said to be of local type if � 

is finite and |��1,�	| =
�
� |�| for all −1 ≠ � ∈ � (and, as always in quaternionic 

structures, ��1, −1	 = �). The Witt ring (�,�) associated to ��,�,�	 of local 

type is called Witt ring of local type. By [2, Lemma 2.2], every automorphism of 

finite product of quaternionic structures of local type preserves factors of the prod-

uct. Therefore if � is a Witt ring of local type which is a direct product of Witt 

rings of local type ��, … ,�� then by Theorem 1.4 we conclude 

�����	 ≅ 
������	�

���
 

if Witt rings ��, … ,�� are pairwise non-isomorphic (compare [2, Corollary 2.6]) 

and by Theorem 1.3 we get 

�����	 ≅
������	�

���
⋉ '(�) 

if Witt rings ��, … ,�� can be divided into classes of Witt rings with respect to 

strong isomorphism (compare [2, Theorem 2.4]). In fact the results in [2] are special 

cases of our Theorems 1.3 and 1.4. 

2.1. Group Witt rings 

Since our next example involves Witt rings which are group rings with coeffi-

cients in Witt rings of local type first we recall the structure of some Witt rings of 

local type, their associated quaternionic structures and value sets of binary Pfister 

forms (1,�), � ∈ �. 

 

Example 2.1. 

1) Let �(ℚ�) be the Witt ring of local type realized by 3-adic field ℚ�. The ring �(ℚ�) is isomorphic to abstract Witt ring ℤ/4ℤ[>�] - the group ring of the two-

-element multiplicative cyclic group >� = {1,�} with coefficients in the ring ℤ 
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of integers ([5]). The associated quaternionic structure ��ℚ�
,�ℚ�

,�ℚ�
� is based 

on the group �ℚ�
= {1, −1,?, −?} where ? = 3 (compare [7, Theorem 2.2, p. 

152] or [8, Corollary at p. 18]). Therefore the value sets of 1-fold Pfister forms 

are:  �(1,1) = {1, −1}, �(1, −1) = �ℚ�
, �(1,?) = {1,?}, �(1, −?) = {1, −?}. 

It is easy to calculate that the quaternionic structure ��ℚ�
,�ℚ�

,�ℚ�
� (and 

consequently Witt ring �(ℚ�)) has two automorphisms: �� which is identity 

and �� such that ���?	 = −?. One can describe the group ��� @��ℚ�
,�ℚ�

,�ℚ�
�A in another way with use of the results presented in [3] to 

the group Witt ring ℤ/4ℤ[>�]	. 
2) Let �(ℚ�)	 be the Witt ring of local type realized by 5-adic field ℚ�. The ring �(ℚ�) is isomorphic to abstract Witt ring ℤ/2ℤ[>�]	 - the group ring of the 

4-element group %1, �,B, �B& of exponent 2	with coefficients in the ring ℤ [5]. 

The group �ℚ�
 in quaternionic structure ��ℚ�

,�ℚ�
,�ℚ�

� associated to �(ℚ�)	 
can be written as �ℚ�

= {1,?, �, �?}, where @��A = −1 and ? = 5 (for example � = 2) (compare [7, Theorem 2.2, p. 152] or [8, Corollary at p. 18]). Therefore, 

the value sets of 1-fold Pfister forms are: �(1,1) = �ℚ�
, ��1,?	 = {1,?}, �(1,�) = {1,�}, �(1,�?) = {1,�?}. 

One can calculate that in this case the group of strong automorphisms ���(��ℚ�	) has 6 elements (Compare also [3, Theorem 2.2] and use it to the 

group Witt ring ℤ/2ℤ[>�]). 
 

Example 2.2. 

Consider Witt ring � = (�,�) which is a direct product of two group Witt rings, 

namely � ≅ �� ⊓�� = (��ℚ�	⊓��ℚ�	)[>�] ⊓ (�(ℚ�))[>�]. 
Let us write out the quaternionic structure associated to the Witt ring �.  

Using usual calculation in group Witt rings (see [5, Chapter 5, §4] and [3]) and our 

notation concerning group Witt rings we get � ≅ �� × �� = ��ℚ�
× �ℚ�

× >�� ×

× 	(�ℚ�
× >�). Then |�| = |��| ⋅ |��| = �4 ⋅ 4 ⋅ 2	 ⋅ �4 ⋅ 2	 = 256. 

Since we will use the cardinality of value sets of binary Pfister forms in �� and �� (and consequently in �), then we will describe it precisely. 

The ring �� is the group ring of the group >� = {1,�} with coefficients in direct 

product of Witt rings of local type ��ℚ�	 ⊓��ℚ�	. Using information about 

value sets of Witt rings of local type and about the way of calculation of value sets 

in group Witt rings [compare [3]) we can calculate value sets in �� as follows: 

1) |���1�, −1�	| = 32. 

2) There are 16 elements such that |���1�,�	| = 2, where ±1� ≠ � ∈ �� is of the 

form � = [�, �], � ≠ 1, � ∈ �ℚ�
× �ℚ�

, � ∈ >� (then ���1�,�	 = %1�,�&). 
3) There are 9 elements of the form −1� ≠ � ≠ !�, 1" ∈ (�ℚ�

× �ℚ�
) × >�, such 

that |���1�,�	| = 4 (in particular |���1�, 1�	| = 4). 
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4) There are 6 elements of the form ±1� ≠ � = !�, 1" ∈ (�ℚ�
× �ℚ�

) × >�, such 

that |���1�,�	| = 8. 

The ring �� is the group ring of the group >� with coefficients in Witt ring of 

local type ��ℚ�	. Therefore �� fulfills the following conditions: 

1) ���1�, −1�	 = ��, 
2) ���1�, 1�	| = {1�, −1�}, 
3) ���1�, �	| = {1�, �} for all � ∈ ��, � ≠ ±1�. 

Since the group � has cardinality 256 then the task of searching of all its 

automorphisms is very difficult. In order to calculate the number of all strong 

automorphisms of Witt ring � we used a computer program, where the group � is 

considered as a vector space over the two-element field C�. The algorithm and full 

description of the program one can find in [9]. With use of this tool we got the 

following result: |�����	| = 3072. 

Now we shall prove that any automorphism of the quaternionic structure 

(�� × ��,�� × ��,�� × ��) preserves the factors of the product. This fact allows 

us to apply our theorem 1.4 which implies that �����	 ≅ ������	 × ���(��) 
and consequently |�����	| = |������	| ⋅ |������	| = 128 ⋅ 24 = 3072. 

Let ��,�,�	 = (�� × ��,�� × ��,�� × ��) be the quaternionic structure asso-

ciated to above Witt ring � ≅ �� ⊓��. We shall show that for any � ∈���(�,�,�) the following conditions hold: 

1) ���� × %1�&	 = �� × {1�} and 

2) ��%1�&× ��	 = %1�&× ��. 
The proof is based on knowledge about value sets of 1-fold Pfister forms in 

quaternionic structures ���,��,��	 and ���,��,��	. 
Let � be fixed automorphism of ��,�,�	. 
Step 1. Consider an element $ = !1�, −1�" ∈ � = �� × ��. We know that |��D,$	| = |�(!1�, 1�", !−1�, −1�")| = |���1�, 1�	× ���1�, −1�	| = 4 ⋅ 8 = 32.  

Assume that ��$	 = !�,B". Since � preserves value sets of forms (as 

automorphism of quaternionic structure), hence in particular |��!1�, 1�", !�,B"	| =
= 32. Suppose that B ≠ −1 in ��. Then |���!1�,B"	| = 2. Therefore, if |��!1�, 1�", !�,B"	| = |���1�,�	| ⋅ |���!1�,B"	| = 32, it follows |���1�,�	| = 16 

in ��, contradiction, since it does not hold for any � ∈ ��. Thus B = −1� and ���	 = ��!1�, −1�"	 = [�, −1�] for some � ∈ �� such that |���1�,�	| = 4. 

If we take the opposite element, then ��−$	 = ��!−1�, 1�"	 = −��$	 = 
= 	 !−�, 1�" for some � ∈ ��. We have |��1�, −$	| = |��[1�, 1�", !−1�, 1�")| = 

= 	 |���1�, −1�	| ⋅ |���1�, 1�	| = 32 ⋅ 2 = 64, hence also E��1�,��−$	�E = 64. 

Now we calculate 64 = |��[1�, 1�", [−�, 1�])| = |���1�, −�	× ��(1�, 1�)|. 
Since |���1�, 1�	| = 2, then |���1�, −�	| = 32 and it follows that −� = −1� and � = 1�. 

Finally, for any � ∈ �����,�, �	 we have shown that ��!1�, −1�"	 = [1�, −1�] 
(and ��!−1�, 1�"	 = [−1�, 1�]). 
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Step 2. Consider an element $ = !−1�,B" ∈ � = �� × �� and such that B ≠ ±1�. 
We have |��D,$	| = |�(!1�, 1�", !−1�,B")| = |���1�, −1�	 × ���1�,B	| = 32 ⋅
2 = 64. Assume that ��$	 = ��!−1�,B"	 = !�	,B	" = $′ for some �	 ∈ ��, B	 ∈ ��. Since � preserves value sets of forms, then |��!1�, 1�", !�′,B′"	| = 64. 

In our Witt ring either of the two cases occur: �)	|��!1�, 1�", !�	,B	"	| = |���1�,�		| ⋅ |��(1�,B′)| = 32 ⋅ 2 or 

b) |��!1�, 1�", !�	,B	"	| = |���1�,�		| ⋅ |��(1�,B′)| = 8 ⋅ 8. 

Suppose that the case b) holds. It is possible only if: 

(�)	|���1�,�		| = 8, hence we get �	 ≠ ±1� and 

(ii) |���1�,B′	| = 8, thus B	 = −1� ∈ ��. 
Now we consider the opposite element. We have ��−$	 = ��!1�, −B"	 = 
= !−�	, 1�" = −$′. Since B ≠ ±1�  , it follows that |��D, −$	| = |D�!1�, 1�", !1�, −y"	| = |D��1�, 1�	× D��1�, −y	| = |D��1�, 1�	| ⋅|D��1�, −y	| = 4 ⋅ 2 = 8.  

Next, since � is an isomorphism of quaternionic structures (and preserves value 

sets of forms), we get 8 = E��D,��−$	�E = |��!1�, 1�".,�(!1�, −B"))| = 

= |��!1�, 1�", !−�′, 1�"	| = |���1�, −�		| ⋅ |���1�, 1�	| = |���1�, −�		| ⋅ 2. Thus |���1�, −�		| = 4. It follows that �′ is an element of �� = �ℚ�
× �ℚ�

× >� such 

that �	 = [F, �, 1] for some F, � ∈ �ℚ�
. Notice first that �	 ≠ !1, −1,1" and �	 ≠ 

≠ [−1,1,1]. In fact, suppose that �	 = !1, −1,1". Then |���1�, �		| = |���!1,1,1", !1, −1,1"	| = 8, and consequently |���1�, −�		| = 
= |���!1,1,1", !−1,1,1"	| = 8, a contradiction (because we have assumed |���1�, −�		| = 4 ). Analogously, �′ = [−1,1,1] is not possible, because it implies |���1�, −�		| = |���!1,1,1", !1, −1,1"	| = 8 and we get the same contradiction. 

There are two cases possible: 

1) |�ℚ�
�1, F	| = 4, thus F = −1 ∈ �ℚ�

 and |�ℚ�
�1, �	| = 2, hence � ≠ −1. 

By previous notation we have �ℚ�
= {1, −1,?, −?} where ? ≠ ±1 and >� = {1, �}, so we can write  

 �	 = [−1,?, 1]     or     �	 = [−1, −?, 1] (2.1) 

2) |�ℚ�
�1, F	| = 2, thus F ≠ −1 and |�ℚ�

�1, �	| = 4, hence � = −1 and then 

 �	 = [?, −1,1]     or     �	 = [−?, −1,1] (2.2) 

since we have excluded the cases �	 = [1, −1,1] and �	 = [−1, −1,1]. 
Now we use results from Step 1. We know that the element !−1�, 1�" is of the 

form !−1�,B", hence by previous calculation !−1�, 1�" ∈ �(!1�, 1�", [−1�,B]) and 

by Step 1 for any automorphism � of quaternionic structure (�,�,�) we have ��!−1�, 1�"	 = [−1�, 1�]. Therefore using, again the properties of � we get !−1�, 1�" = ��!−1�, 1�"	 ∈ �(!1�, 1�",��!−1�,B"	 = ��!1�, 1�", !�	,B	"	 =
= 	���1�,�		× ��(1�,B	). It follows that −1� ∈ ��(1�,�	), therefore using twice 
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(1.1) we get −�′ ∈ ��
�1�, 1�� = {�−1,−1,1�, �1,1,1�, �1,−1,1�, [−1,1,1]}, what is 

a contradiction to (2.1), (2.2) and |��
�1�, −���| = 4. Therefore (ii) �� = −1� ∈ 	� 

is false and consequently the case b) does not occur. It follows only the case a) is 

true, that means for any 
 ∈ ��(	,�,�) we have 
��−1�,��� = [−1�,��] for 
some �� ∈ 		�, such that |��

�1�,���| = 2. It follows that for any � = �1,�� ∈
∈ 	� × 	� holds 
�−�� = 
��1�,��� = [1�,��] for some �� ∈ 	�, what means that 


��1��× 	�
� = �1��× 	�. 

 

Step 3. Notice that 

���1�, 1��, �−1�, 1��� ∩ ���1�, 1��, �−1�,��� = 
= ���

�1�, −1�� ×��
�1�, 1��� ∩ ���

�1�, −1��× ��
�1�,��� = 

= ���
�1�, −1�� ∩��

�1�, −1��� × ���
�1�, 1�� ∩ ��

�1�,��� = 	� × {1�}. 

Therefore for any 
 ∈ ��(	,�,�) we get 

�	� × �1��� = 

= 
��(�1�, 1��, �−1�, 1��) ∩ �(�1�, 1��, �−1�,��)� = 
= ���1�, 1���,
(�−1�, 1��)) ∩ �(�1�, 1��,
([−1�,�])) = 

= ���1�, 1��, �−1�, 1��� ∩ ���1�, 1��, �−1�,���� = 	� × {1�} 
q.e.d. 
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