PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New approach to cast dispersive composite engineering

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this work was to show possibilities of numerical simulation software, based on heat transfer model, commonly used in foundry industry in cast composite properties engineering. Design/methodology/approach: The main restriction in most of used software systems is lack of heat transfer, which may occur at composite creation. In this work the reinforcing particle morphology an size were expressed by one quantity - morphological modulus Mm and were examined for influence on heat transfer and conductivity up to the Newton’s and Fourier’s laws. Findings: The main restrictions for using Fourier’s model based software for composite engineering are shown. The way for crystallization control was presented including influence of morphology, transition zone and thermophysical properties of components. Research limitations/implications: Proposed methodology can be used for cast composite properties engineering in cases, where relative motion of components is negligible. In other cases heat transfer coefficient is justified only if the software used is based on Fourier’s model and the source code is accessible. Originality/value: Proposed assumptions create possibility for components selection verification in terms of technological and operating properties of cast composite. An example of such approach was shown in work [1].
Rocznik
Strony
63--66
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Division of Foundry, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
Bibliografia
  • [1] M. Cholewa, Simulation of solidification process for composite micro region with incomplete wetting of reinforcing partile, 13 th Intern. Sci. Conf. AMME. Gliwice, 2005, p. 67.
  • [2] S. Pawłowski, S. Serkowski, Fireproof materials for metallurgical applications, part I, Nr 1892, Gliwice, 1995 (in polish).
  • [3] Z. Jura, Simulation software CasTech. Scientific works of Silesian University of technology KMiSt. v.30, Gliwice 1997, p. 119 (in polish).
  • [4] Z. Poniewierski, Crystallization, structure and properties of AlSi alloys, WNT, Warsaw, 1989 (in polish).
  • [5] S. Pietrowski, AlSi alloys, Wyd. Pol. Łódzkiej, Łódź 2001. (in polish).
  • [6] J. Składzień, Thermokinetics and thermodynamics, Pol. Śl., nr 1213, Gliwice, 1985. (in polish).
  • [7] S. Wiśniewski, Heat transfer, PWN, Warsaw, 1998. (in polish).
  • [8] Z. Ignaszak, P. Mikołajczak, Discretization influence on gradient parameters in solidification process simulation, Arch. Techn. Masz. i Autom, v. 18, 1998, p. 163. (in polish).
  • [9] W. Kapturkiewicz, Modeling of cast iron castings crystallization, Wyd. Nauk. Akapit, Cracow, 2003. (in polish).
  • [10] Z. Ignaszak, Validation of virtual engineering systems applied in foundry industry, Konf. Sprawozd. Kom. Hutn. PAN, Krynica, 2002. (in polish).
  • [11] D.M. Stefanescu, H. Pang, Modeling of casting solidification stochastic or deterministic?, Canadian Metallurgical Quarterly, v. 37, nr 3-4,1998 p. 229.
  • [12] R. Sasikumar, R. Kumar, The Strength Of The Coupling Between Macroscopic Heat Flow And Equiaxed Grain Formation In Castings, Acta. Metall. Mater., v. 43, no 12, p 4387.
  • [13] Ph. Thevoz, Desboilles, M. Rappaz: Modeling of equiaxed microstructure formation in casting, Metall. Trans. A., v. 20A, 1989, p. 311.
  • [14] Kapturkiewicz, Model and numerical simulation of casting crystallization, Publ. of the Academy of Mining and Metallurgy, v 109, p. 10.
  • [15] C.A. Gandin, M. Rappaz: Couplet Finite Element-Cellular Automaton Model for The Prediction of Dendritic Grain Structures in Solidification Processes, Acta Metall. Mater., v. 43, 1994, p. 2233.
  • [16] P. Thevoz, M. Gaumann, M. Gremaud, The numerical simulation of continuous and investment casting, J.of Mater., 2002, p.343.
  • [17] E. Majchrzak, B. Mochnacki, J.S. Suchy, Solidification of cast composite - numerical analysis of heat transfer between spherical particle and metal matrix, 7th Intern. Sci. Conf. AMME. Gliwice, 1998, p. 329.
  • [18] S. Kumai, Hu J. Higo Y., Effects of dendrite cell size and particle distribution on the near-threshold fatigue crack growth behavior of cast Al-SiCp composites, Materials Processing, Elsevier Science, 1995, s. 376.
  • [19] H.J. Brinkman, J. Duszczyk, L. Katgerman, Produktion of aluminum composites by P/M router, 7th Intern. Sci. Conf. AMME. Gliwice, 1998, p. 49.
  • [20] A. Olszówka-Myalska, J. Śleziona, Surfacial fenomena on Sic-Al alloy interface as composite manufacturing and exploitation factors, 7th Intern. Sci. Conf. AMME. Gliwice, 1998, p. 395 (in polish).
  • [21] L.A. Dobrzański, M. Piec, Structure and properties of aluminum alloys reinforced with the Al2O3 particles, 12th Intern. Sci. Conf. AMME. Gliwice, 2003, p. 271.
  • [22] L.A. Dobrzański, A. Włodarczyk, A. Adamiak, Composite materials with AlCu4Mg1 matrix reinforced with ceramic particles, 12th Intern. Sci. Conf. AMME. Gliwice, 2003, p. 297 (in polish).
  • [23] J. Hemanth, K.S. Shashi Shekar, Effect of heat transfer on strength and fracture behavior of Al/Al2SiO5 hybrid MMCs, 12th Intern. Sci. Conf. AMME. Gliwice, 2003, p. 371.
  • [24] M. Cholewa, Simulation of composite microregions solidification process, 13th Intern. Sci. Conf. AMME. Gliwice, 2005, p. 63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4ce8c38-4e7f-4d22-920f-9315ec94e4c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.