Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In-situ study on the high-temperature fracture behaviour of 347 stainless steel was carried out by using a confocal laser scanning microscope (CLSM). The welding microstructures of the 347 stainless steel were simulated by subjecting the steel specimen to solution and aging treatments. Undissolved NbC carbides were present within grains after solution treatment, and M23C6 carbides were preferentially formed at grain boundaries after subsequent aging treatment. The M23C6 carbides formed at grain boundaries worked as stress concentration sites and thus generated larger cracks during high-temperature tensile testing. In addition, grain boundary embrittlement was found to be a dominant mechanism for the high-temperature fracture of the 347 stainless steel because vacancy diffusion in the Cr-depleted zones enhances intergranular fracture due to the precipitation of M23C6 carbides at grain boundaries.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1019--1022
Opis fizyczny
Bibliogr. 21 poz., fot., rys.
Twórcy
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
autor
- Korea University, Department of Materials Science and Engineering, Seoul 02841, Republic of Korea
autor
- ADNOC LNG, Abu Dhabi, United Arab Emirates
autor
- Korea University, Department of Materials Science and Engineering, Seoul 02841, Republic of Korea
autor
- Korea University, Department of Materials Science and Engineering, Seoul 02841, Republic of Korea
autor
- Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
Bibliografia
- [1] H.H. Park, J.Y. Kang, H.Y. Ha, T.H. Lee, H.U. Hong, Korean J. Met. Mater. 55, 470-476 (2017).
- [2] B. Jian, X. Hu, Y. Liu, Mat. Mater. Int. 26, 1295-1305 (2020).
- [3] H.P. Kim, D.J. Kim, Corros. Sci. Tech. 17, 183-192 (2018).
- [4] Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, H. Li, J. Mater. Res. 30, 3642-3652 (2015).
- [5] B. Sasmal, J. Mater. Sci. 32, 5439-5444 (1997).
- [6] K. Kaneko, T. Fukunage, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard, P. A. Midgley, Scr. Mater. 65, 509-512 (2011).
- [7] X. Hu, L. Li, X. Wu, M. Zhang, Int. J. Fatigue. 28, 175-182 (2006).
- [8] H.U. Hong, B.S. Rho, S.W. Nam, J. Mater. Sci. Eng. A. 318, 285-292 (2001).
- [9] E.A. Trillo, L.E. Murr, J. Mater. Sci. 33, 1263-1271 (1998).
- [10] J.P. Adamson, J.W. Martin, Acta Mater. 19, 1015-1018 (1971)
- [11] S.H. Lee, H.S. Na, K.W. Lee, Y. Choe, C.Y. Kang, Metals. 8, 1-14 (2018).
- [12] Y.M. He, Y.H. Wang, K. Guo, T.S. Wang, J. Mater. Sci. Eng. A. 708, 248-253 (2017).
- [13] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A. 742, 334-343 (2019).
- [14] R. Raj, M.F. Ashby, Metall. Mater. Trans. 2, 1113-1127 (1971).
- [15] T.G. Langdon, Acta Metal. Mater. 42, 2437-2443 (1994).
- [16] Q. Wu, T. Han, Y. Wang, H. Wang, H. Zhang, S. Gu, Eng. Fail. Anal. 109, 104236 (2020).
- [17] E. Merson, V. Danilov, D. Merson, A. Vinogradov, Eng. Fract. Mech. 183, 147-158 (2017).
- [18] J. Tian, G. Xu, X. Wan, Mat. Mater. Int. 26, 961-972 (2020).
- [19] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
- [20] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A. 711, 22-28 (2018).
- [21] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A. 758, 56-59 (2019).
Uwagi
1. This study was supported by the research Program funded by the SeoulTech (Seoul National University of Science and Technology).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4ccbd9f-06db-4920-bd24-e6b96f028795