PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polycyclic Aromatic Hydrocarbons Formed During the Pyrolysis Process of Plastics – Characterization, Quantification and Risk Assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Occurrence, distribution, and toxicity assessment of 16 Polycyclic Aromatic Hydrocarbons (PAHs) prioritized by the US Environmental Protection Agency in pyrolysis products – pyrolysis oil and pyrolysis wax – of different plastics are characterized. PP, HDPE, LDPE, PVC, PS (respectively, polypropylene, high- and low-density polyethylene, polyvinylchloride and polystyrene) and their mixture named 5P are chosen as a feed material for pyrolysis. Pyrolysis process is carried out in a custom-built laboratory batch reactor with the pyrolysis temperature of 450 °C for PP, PVC, PS and 500 °C for HDPE and LDPE. 5P mixture is pyrolyzed at 500 and 700 °C. PAHs quantification is used to determine the toxicity equivalency quantity TEQ (BaP) for each pyrolysis product and to establish the degree of toxicity. The highest total concentration of 16 PAHs in pyrolysis oil is found to decrease in the order of PVC > PP > PS > LDPE > HDPE. According to TEQ (BaP), the toxicity of the most toxic pyrolysis oils correlates with the aforementioned order of the total concentration, i.e., being lowest for HPDE and highest for PVC. For pyrolysis wax, the highest total concentration of 16 PAHs is for PVC > PS > LDPE > PP > HDPE, while TEQ (BaP) value decreases as PVC > LDPE > PP > PS > HDPE. The PAHs concentration and TEQ (BaP) values of 5P mixture show similar trends in both products (oil, wax), i.e., they both increase with increasing pyrolysis temperature.
Twórcy
  • Faculty of Environment, Jan Evangelista Purkyne University in Usti nad Labem, Pasteurova 3632/15, 400 96, Usti and Labem, Czech Republic
autor
  • Faculty of Environment, Jan Evangelista Purkyne University in Usti nad Labem, Pasteurova 3632/15, 400 96, Usti and Labem, Czech Republic
  • ORLEN UniCRE a.s., Revolucni 1521/84, 400 01, Usti nad Labem, Czech Republic
  • Faculty of Environment, Jan Evangelista Purkyne University in Usti nad Labem, Pasteurova 3632/15, 400 96, Usti and Labem, Czech Republic
  • Department of Electrotechnology, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
autor
  • Faculty of Environment, Jan Evangelista Purkyne University in Usti nad Labem, Pasteurova 3632/15, 400 96, Usti and Labem, Czech Republic
  • Matej Bel University in Banska Bystrica, Tajovskeho 40, 974 01, Banska Bystrica, Slovakia
  • Faculty of Environment, Jan Evangelista Purkyne University in Usti nad Labem, Pasteurova 3632/15, 400 96, Usti and Labem, Czech Republic
Bibliografia
  • 1. Abdel-Shafy, H.I., Mansour, M.S.M. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet., 25, 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011
  • 2. Achilias, D.S., Karayannidis, G.P. 2004. The chemical recycling of PET in the framework of sustainable development. Water Air Soil Pollut. Focus, 4, 385–396. https://doi.org/10.1023/B:WAFO.0000044812.47185.0f
  • 3. Agency for Toxic Substances and Disease Registry. 2022. Guidance for Calculating Benzo(a)pyrene Equivalents for Cancer Evaluations of Polycyclic Aromatic Hydrocarbons. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. April 14.
  • 4. Atkinson, R., Arey, J. 1994. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environ. Health Perspect., 102, 117–126. https://doi.org/10.1289/ehp.94102s4117
  • 5. Conesa, J.A., Font, R., Fullana, A., Martín-Gullón, I., Aracil, I., Gálvez, A., Moltó, J., Gómez-Rico, M.F. 2009. Comparison between emissions from the pyrolysis and combustion of different wastes. J. Anal. Appl. Pyrolysis, 84, 95–102. https://doi.org/10.1016/j.jaap.2008.11.022
  • 6. Hu, Y., Xia, Y., Di Maio, F., Yu, F., Yu, W. 2020. Investigation of polycyclic aromatic hydrocarbons (PAHs) formed in three-phase products from the pyrolysis of various wastewater sewage sludge. J. Hazard. Mater., 389, 122045. https://doi.org/10.1016/j.jhazmat.2020.122045
  • 7. Chen, C.F., Ju, Y.R, Lim, Y.C., Hsieh, S.L., Tsai, M.L, Sun, P.P., Katiyar, R., Chen, C.W., Dong, C.D. 2019. Determination of polycyclic aromatic hydrocarbons in sludge from water and wastewater treatment plants by GC-MS. Int. J. Environ. Res. Public Health, 16, 2604. https://doi.org/10.3390/ijerph16142604
  • 8. Chen, D., Yin, L., Wang, H., He, P. 2015. Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Manage, 37, 116–136. https://doi.org/10.1016/j.wasman.2015.01.022
  • 9. Hernández, M. del R., García, Á.N., Gomis, A.M. 2007. Catalytic flash pyrolysis of HDPE in a fluidized bed reactor for recovery of fuel-like hydrocarbons. J. Anal. Appl. Pyrolysis, 78, 272–281. https://doi.org/10.1016/j.jaap.2006.03.009
  • 10. Kaminsky, W., Sinn, H., Jones, J.L., Radding, S.B. 1980.Thermal conversion of solid wastes and biomass, ACS Symposium series 130, American Chemical Society, Washington, DC.
  • 11. Koo, J.K., Kim, S.W., Seo, Y.H. 1991. Characterization of aromatic hydrocarbon formation from pyrolysis of polyethylene-polystyrene mixtures. Resour. Conserv. Recycl., 5, 365–382. https://doi.org/10.1016/0921-3449(91)90013-E
  • 12. Kusenberg, M., Eschenbacher, A., Djokic, M.R., Zayoud, A., Ragaert, K., De Meester, S., Van Geem, K.M. 2022. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate? Waste Manage., 138, 83– 115. https://doi.org/10.1016/j.wasman.2021.11.009
  • 13. Li, A.M., Li, X.D., Li, S.Q., Yan, J.H., Cen, K.F. 1999. Experiment on manufacture medium heating value flue gas by pyrolyzing municipal refuse in a rotary kiln. J. Chem. Ind. Eng. (China), 50, 101–107.
  • 14. Nisbet, I.C.T., LaGoy, P.K. 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. and Pharmacol., 16, 290–300. https://doi.org/10.1016/0273-2300(92)90009-X
  • 15. Onwudili, J.A., Insura N., Williams, P.T. 2009. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. J. Anal. Appl. Pyrolysis, 86, 293–303. https://doi.org/10.1016/j.jaap.2009.07.008
  • 16. Scott, D.S., Czernik, S.R., Piskorz, J., Radlein, D.St.A.G. 1990, Fast Pyrolysis of Plastic Wastes. Energy Fuels 4, 407–411. https://doi.org/10.1021/ef00022a013
  • 17. Scheirs, J., Kaminsky, W. 2006. Feedstock recycling and pyrolysis of waste plastics. Chichester, UK; Hoboken, NJ: J. Wiley & Sons.
  • 18. Skupinska, K., Misiewicz, I., Kasprzycka-Guttman, T. 2004. Polycyclic aromatic hydrocarbons: physicochemical properties, environmental appearance and impact on living organisms. Acta Pol. Pharm., 61, 233–240.
  • 19. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monographs on the evaluation of carcinogenic risks to humans. 2010. France, ISBN 978 92 832 1292 8.
  • 20. Srogi K. 2007. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett., 5, 169–95. http://dx.doi.org/10.1007/s10311-007-0095-0
  • 21. Towfighi, J., Sadrameli, M., Niaei, A. 2002. Coke formation mechanisms and coke inhibiting methods in pyrolysis furnaces. J. Chem. Eng. Jpn., 35, 923–937. https://doi.org/10.1252/jcej.35.923
  • 22. Villanueva, A., Eder, P. 2014. End-of-waste criteria for waste plastic for conversion. Technical proposals. EUR 26843. Luxembourg, Publications Office of the European Union. JRC91637. https://data.europa.eu/doi/10.2791/13
  • 23. Williams, E.A., Williams, P.T. 1997. The pyrolysis of individual plastics and a plastic mixture in a fixed bed reactor. J. Chem. Tech. Biotechnol., 70, 9–20. https://doi.org/10.1002/(SICI)1097-4660(199709)70:1<9 ::AID-JCTB700>3.0.CO;2-E
  • 24. Williams, P.T., Horne, P.A., Taylor, D.T. 1993. Polycyclic aromatic hydrocarbons in polystyrene derived pyrolysis oil. J. Anal. Appl. Pyrolysis, 25, 325–334. https://doi.org/10.1016/0165-2370(93)80052-2
  • 25. Williams, P.T., Williams, E.A. 1999. Fluidized bed pyrolysis of low-density polyethylene to produce petrochemical feedstock. J. Anal. Appl. Pyrolysis, 51, 107–126. https://doi.org/10.1016/S0165-2370(99)00011-X
  • 26. Williams, P.T., Williams, E.A. 2010. Product composition from the fast pyrolysis of polystyrene. Environ. Technol., 20, 1109–1118. https://doi.org/10.1080/09593332008616908
  • 27. Zhang Z., Ning, S., Li, Q., Sun, M., Lin, J., Wang, X. 2021. Levels and risk assessment of polycyclic aromatic hydrocarbons in wood vinegars from pyrolysis of biomass. Chemosphere, 278, 130453. https://doi.org/10.1016/j.chemosphere.2021.130453
  • 28. Zhou, H., Wu, Ch., Onwudili, J.A., Meng, A., Zhang, Y., Williams, P.T. 2015. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Manage., 36, 136–146. https://doi.org/10.1016/j.wasman.2014.09.014
  • 29. Zhou, H., Wu, Ch., Onwudili, J.A., Meng, A., Zhang, Y., Williams, P.T. 2016. Influence of process conditions on the formation of 2–4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Process. Technol., 144, 299–304. https://doi.org/10.1016/j.fuproc.2016.01.013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4c9beb7-7da5-4591-aecf-3d198c6aa6dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.