Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work we apply global invertibility result in order to examine the solvability of elliptic equations with both Neumann and Dirichlet boundary conditions.
Czasopismo
Rocznik
Tom
Strony
37--47
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Lodz University of Technology Institute of Mathematics Wólczańska 215, 90-924 Łódź, Poland
autor
- Lodz University of Technology Institute of Mathematics Wólczańska 215, 90-924 Łódź, Poland
Bibliografia
- [1] A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, vol. 34, Cambridge University Press, 1995.
- [2] M. Bełdziński, M. Galewski, Global diffeomorphism theorem applied to the solvability of discrete and continuous boundary value problems, J. Difference Equ. Appl. 24 (2018) 2, 277-290.
- [3] M. Bełdziński, M. Galewski, R. Stegliński, Solvability of abstract se.miline.ar equations by a global diffeomorphism theorem, Result. Math. 73 (2018) 3, Paper No. 122.
- [4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, New York, Springer, 2011.
- [5] D. Idczak, A. Skowron, S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces, Adv. Nonlinear Stud. 12 (2012) 1, 89-100.
- [6] K. Schmudgen, Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, vol. 265, Springer, Dordrecht, 2012.
- [7] R. Stegliński, A global diffeomorphism theorem and a unique weak solution of Dirichlet problem, Complex Var. Elliptic Equ. 64 (2019) 8, 1285-1296.
- [8] E. Zeidler, Nonlinear Functional Analysis and its Applications. I: Fixed-point Theorems, New York, Springer-Verlag, 1986.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4c8d808-8cda-4b47-98fc-276715ee7581