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1. INTRODUCTION

In this note we study a unique solvability of the following boundary value problems
{
−∆u = f(u) + h on Ω,
u = 0 on ∂Ω

(Dh)

and {
−∆u = f(u) + h on Ω,
∂νu = 0 on ∂Ω,

(Nh)

where f : R→ R is of class C1, Ω is an open, bounded and connected subset of Rd,
d ∈ {1, 2, 3}, with a C2–boundary and h ∈ L2(Ω) is any fixed function. Solutions are
understood in the H2–sense, while the boundary value conditions are understood in
the sense of a trace operator. The stability of problems (Dh) and (Nh) is understood
as a C1–differentiability of the mapping

L2(Ω) 3 h 7−→ uh ∈ H2(Ω),
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where uh is a solution to (Dh) or (Nh), respectively. To obtain such a result we show
that associated solution operator, namely u 7−→ ∆u+ f ◦ u is diffeomorphism. Such
approach was considered in [1], where authors considered an operator defined between
the spaces of Hölder continuous functions. While we are inspired by their results, we
consider the solvability under somehow different assumptions since we do not restrict
ourselves to relations between the first eigenvalue of the differential operator and the
growth of the nonlinear term but we also investigate the interplay between the growth
of the nonlinear term and other eigenvalues.

We have already considered global invertibility of mappings with applications to
solvability of nonlinear boundary value problems in [2], [3] using the global inversion
result due to [5]. The methodology used there was much more complicated and
pertained to the application of tools from critical point theory, namely it required the
Palais–Smale condition to be checked in addition to local invertibility and coercivity.
Moreover, in the sources mentioned, as well as in [7], only relations between the growth
of the nonlinear term and the first eigenvalue of the differential operator are used and
only Dirichlet problems are considered.

2. PRELIMINARIES

2.1. SOBOLEV SPACES AND TRACE OPERATORS

Let C∞c (Ω) stands for all smooth real functions with a compact support contained in Ω.
We say that u ∈ L2(Ω) belongs to H1(Ω) if there exists ∇u = (∂xiu)di=1 ∈ (L2(Ω))d
such that for every i = 1, . . . , d it holds

∫

Ω

u(x)∂xiϕ(x)dx = −
∫

Ω

∂xiu(x)ϕ(x)dx, ϕ ∈ C∞c (Ω).

We say that u ∈ H2(Ω) if ∂xi
u ∈ H1(Ω) for every i = 1, . . . , d. Moreover, we put

H1
0 (Ω) = C∞c (Ω)H1 and H2

0 (Ω) = C∞c (Ω)H2

Let us recall that for every u ∈ H2(Ω) there exists a unique representation
U ∈ C(Ω) such that u = U a.e. on Ω. Moreover, the embedding H2(Ω) ↪→ C(Ω), given
by u 7−→ U is compact. Since we identify elements of L2(Ω) with they representations,
the embedding H2(Ω) ↪→ C(Ω) is understood as an identity.

Since ∂Ω is of class C2, then we can consider a surface measure s on ∂Ω. Put

L2(∂Ω) =



u : ∂Ω→ R :

∫

∂Ω

|u(x)|2ds(x) <∞





and equip it with a natural norm

‖u‖L2(∂Ω) =



∫

∂Ω

|u(x)|2ds(x)




1
2

.
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Since C∞(Ω) is dense in H2(Ω), then we define trace operators

γ0, γ1 : H2(Ω) ⊃ C∞(Ω)→ L2(∂Ω)

given by the formulas

γ0u(x) = u(x) for x ∈ ∂Ω,
γ1u(x) = ∂νu(x) for x ∈ ∂Ω,

where ∂ν stands for outward normal derivative. Operators γ0 and γ1 are continuous
with respect to H2–topology, see [4]. Therefore, each of them has a unique extension on
whole H2(Ω), denoted again by γ0 and γ1. For every u ∈ H1

0 (Ω) conditions u ∈ H1
0 (Ω)

and γ0u = 0 coincide. Moreover condition u = 0 on ∂Ω, from now on, is understood
as γ0u = 0. Analogously, condition ∂νu = 0 on ∂Ω is equivalent with γ1u = 0.

Theorem 2.1 ([4]). Assume that there exists u ∈ H1
0 (Ω) and v ∈ L2(Ω) such that

∫

Ω

(∇u(x)|∇ϕ(x)) dx+
∫

Ω

u(x)ϕ(x) =
∫

Ω

v(x)ϕ(x)dx, ϕ ∈ H1
0 (Ω).

Then u ∈ H2(Ω) and γ0u = 0. In particular, −∆u+ u = v.

Theorem 2.2 ([4]). Assume that there exists u ∈ H1(Ω) and v ∈ L2(Ω) such that
∫

Ω

(∇u(x)|∇ϕ(x))dx+
∫

Ω

u(x)ϕ(x) =
∫

Ω

v(x)ϕ(x)dx, ϕ ∈ H1(Ω).

Then u ∈ H2(Ω) and γ1u = 0. In particular, −∆u+ u = v.

2.2. VARIATIONAL CALCULUS

Consider a continuous function g : Ω× R→ R and define G : Ω× R→ R by

G(x, s) =
s∫

0

g(x, τ)dτ, x ∈ Ω, s ∈ R.

Fix h ∈ L2(Ω) and define a functionals ED : H1
0 (Ω)→ R and EN : H1(Ω)→ R by

ED(u) = EN (u) = 1
2

∫

Ω

|∇u(x)|2dx− 1
2

∫

Ω

G(x, u(x))dx−
∫

Ω

h(x)u(x)dx

Then ED and EN are of class C1 with derivatives

〈E ′D(u), v〉 = 〈E ′N (u), v〉

=
∫

Ω

(∇u(x)|∇v(x))dx−
∫

Ω

g(x, u(x))v(x)dx−
∫

Ω

h(x)v(x)dx.
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for all v from H1
0 (Ω) and H1(Ω), respectively. We consider two boundary value

problems associated with ED and EN , respectively,
{
−∆u = g(x, u) + h on Ω,
u = 0 on ∂Ω

(2.1)

and {
−∆u = g(x, u) + h on Ω,
∂νu = 0 on ∂Ω.

(2.2)

Following the Fermat Rule and Theorems 2.1 and 2.2 we obtain

Proposition 2.3. Every critical point of ED is a solution to (2.1). Analogously, every
critical point of EN is a solution to (2.2).

From the Browder–Minty Theorem we get the following result.

Proposition 2.4. Assume that E is of class C1 and there exists c > 0 such that

〈E ′′(u)v|v〉 ≥ c‖v‖2, u, v ∈ X. (2.3)

Then E has a unique critical point.

2.3. ON THE LAPLACE OPERATOR

Following [6], we consider

D(∆D) =
{
u ∈ H2(Ω) : γ0(u) = 0

}
,

D(∆N ) =
{
u ∈ H2(Ω) : γ1(u) = 0

}
.

Observe that D(∆D) = H2(Ω) ∩ H1
0 (Ω) and D(∆N ) = H2

0 (Ω) ⊕ {C}C∈R. Define
operators ∆D : L2(Ω) ⊃ D(∆D)→ L2(Ω) and ∆N : L2(Ω) ⊃ D(∆N )→ L2(Ω) by

∆Du = ∆u for u ∈ D(−∆D) and ∆Nu = ∆u for u ∈ D(∆N ).

Let L ∈ {−∆D,−∆N}. We recall that set ρ(L) ⊂ R stands for the resolvent of L while
σ(L) = R \ ρ(L) for spectrum of L, see [4].

Following [4] and [6] sets σ(−∆D) and σ(−∆N ) are discrete, that is they can be
write on the following form: σ(−∆D) = {δn}n∈N and σ(−∆N ) = {ηn}n∈N∪{0}, where
δn ↗∞ and ηn ↗∞. Moreover σ(−∆D) ⊂ (0,∞) and σ(−∆N ) ⊂ [0,∞). Therefore
we can put σ(L) = {λn}n∈N . Here N = N when L = −∆D and N = N ∪ {0} with
λ0 = 0 when L = −∆N .

Moreover, for every n ∈ N there exists en ∈ L2(Ω) such that Len = λnen and
(ei)i∈N is an orthonormal basis of L2(Ω). As a consequence, for every u =

∑
i∈N aiei ∈

L2(Ω) we have

Lu = L
∑

i∈N
aiei =

∞∑

i=1
λiaiei.
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Note that λ1 is the smallest positive element of σ(L). Moreover we put λmin = min σ(L).
The Poincaré inequality reads

λ1

∫

Ω

|u(x)|2dx ≤
∫

Ω

|∇u(x)|2dx, u ∈ D(∆D).

Note that similar result is not true on D(∆N ).

2.4. DIFFERENTIABILITY AND GLOBAL INVERTIBILITY

Let us consider an open sets U ⊂ E and V ⊂ F, where E and F are real Banach
spaces. We say that a C1–mapping p is a C1–diffeomorphism of U onto V if p|U
is a homeomorphism of U onto V and (p|U )−1 is of class C1 on V . A mapping is
diffeomorphism if it is a diffeomorphism of E onto F. Moreover, we say that p is a lo-
cal diffeomorphism if for every point u ∈ E there exists its neighbourhood U such that
p is a diffeomorphism of U onto p(U).

Let us denote by Isom(E,F) the space of all linear and continuous bijections
of E. Recall that a C1–mapping p : E → F is a local diffeomorphism if and only if
p′(u) ∈ Isom(E,F) for every u ∈ E, see [1].

The mapping p : E→ F is called proper if p−1(K) is compact for every compact
K ⊂ F. Every homeomorphims is a proper map.
Proposition 2.5 ([8]). Take p, c : E → F. If p is proper, c is strongly continuous,
that is c(un)→ c(u0) whenever un ⇀ u0, and p− c is cercive, that is

lim
‖u‖→∞

‖p(u)− c(u)‖ =∞,

then operator p− c is proper.
Theorem 2.6 ([1]). Assume that p : E → F is continuous and locally invertible,
that is, every point u ∈ E possesses an open neighbourhood U such that p|U is
a homeomorphism of U onto p(U), then the following conditions are equivalent:
(i) p is proper,
(ii) p is a homeomorphism of E onto F.
Proposition 2.7. Assume that p is proper and of class C1. If p′(u) ∈ Isom(E,F) for
every u ∈ E, then p is a C1–diffeomorphism.

3. MAIN RESULT

We investigate which perturbations p : D(L) → L2(Ω) make L − p into
a C1–diffeomorphism between D(L) and L2(Ω). Conditions will be given in terms
of a derivative of a perturbation and of a spectrum of L. Note that −∆D is already
a smooth diffeomorphism as a linear, bounded and bijective mapping. However, note
that this is not the case for −∆N since ker ∆N consists of all constant functions. We
start with linear perturbations then turning to the nonlinear ones.
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3.1. LINEAR PERTURBATION

Let ψ : Ω→ R be a continuous function. We define ψ ∈ B(L2(Ω)) by

(ψu)(x) = ψ(x)u(x), u ∈ L2(Ω), x ∈ Ω (a.e).

Theorem 3.1. If ψ
(
Ω
)
⊂ ρ(L), then L−ψ is an isomorphism of D(L) onto L2(Ω).

Proof. Since L − ψ is bounded and linear, it is enough to show that it is bijective.
Denote

α := min
x∈Ω
{ψ(x)} and β := max

x∈Ω
{ψ(x)}.

We divide this proof into two disjoint cases.

If β < λmin then functional E : X → R, where X ∈ {H1(Ω), H1
0 (Ω)}, given by

E(u) = 1
2

∫

Ω

|∇u(x)|2dx− 1
2

∫

Ω

ψ(x)|u(x)|2dx−
∫

Ω

h(x)u(x)dx, u ∈ X.

satisfies condition (2.3) for some c > 0. Hence, assertion follows by Proposition 2.4.

Let λn−1 < α ≤ β < λn for some n ∈ N . We put λ = λn+λn−1
2 . Define operators

Λ : D(L)→ L2(Ω) and A : L2(Ω)→ L2(Ω) by

Λu = Lu− λu, u ∈ D(L), (3.1)

Au = ψu− λu, u ∈ D(L).
Then for every u =

∑
i∈N αiei we have

‖Λu‖2 =
∥∥∥∥∥
∑

i∈N
(λi − λ)αiei

∥∥∥∥∥

2

=
∑

i∈N
|λi − λ|2α2

i ≥ |λn−λn−1|2
4 ‖u‖2.

Therefore Λ−1 is 2
λn−λn−1

–Lipschitz. Since

‖Au‖ =



∫

Ω

|(ψ(x)− λ)u(x)|2dx




1
2

≤ max
x∈Ω
|ψ(x)− λ|‖u‖.

Then A is
(
λn−λn−1

2 − ε
)
–Lipschitz, where ε = dist

(
σ(L), ψ

(
Ω
))
> 0. Equip D(L)

with the equivalent norm ‖ · ‖Λ := ‖Λ · ‖. Then, for every h ∈ L2(Ω), the mapping
Φ : D(L)→ D(L) given by the formula

Φ(u) = Λ−1(Gu+ h)

is a contraction as a composition of
(
λn−λn−1

2 − ε
)
–Lipschitz mapping, isomtery and

2
λn−λn−1

–Lipschitz function. The assertion now follows by the Banach Contraction
Principle.
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3.2. AUTONOMOUS PERTURBATIONS

Consider a C1–function f : R→ R and the associated operator f : D(L)→ L2(Ω):

f(u)(x) := f(u(x)), u ∈ D(L), x ∈ Ω (a.e.).

Note that operator f is compact due to the compact embedding D(L) ↪→ C(Ω).
Moreover, f is of class C1 with a derivative given by the formula

(
f ′(u)v

)
(x) = f ′(u(x))v(x), u, v ∈ D(L), x ∈ Ω (a.e.).

Proposition 3.2. Assume that f ′(R) ⊂ ρ(L). Then L− f ′(u) is invertible for every
u ∈ D(L).
Proof. Let u ∈ D(L). Then

(L− f ′(u))v(x) = −∆v(x)− f ′(u(x))v(x), v ∈ D(L), x ∈ Ω.

Since u ∈ C(Ω), then assumptions of Theorem 3.1 are satisfied and the assertion
follows.

Although local invertibility is a necessary condition for global invertibility, it is not
sufficient. In other words, there exists a locally invertible C1–mappings, which are not
diffeomorphisms. Moreover, we can find examples of such mappings of the form L− f
for some C1–function f .
Example 3.3. Take Ω = (0, π) and let L = −∆D. Consider f(u) = u + e−u. Then
f ′(R) = (−∞, 1) and hence f ′(R) ⊂ ρ(L) = (−∞, 1) since σ(L) = {n2}n∈N. Then L−
f ′(u) is invertible by Proposition 3.2. Nevertheless, for the sequence (un)n, where
un(x) = n sin(x) for x ∈ (0, π) which has the property ‖un‖ → ∞ we have

‖Lun − f(un)‖2 =
π∫

0

∣∣∣−ün(x)− u(x)− e−u(x)
∣∣∣
2
dx =

π∫

0

e−2n sin(x)dx→ 0,

when n→∞. Therefore L− f cannot be even a homeomorphism.
Example 3.4. For Ω = (0, π) and L = −∆N we take f(u) = e−u. Then arguing as in
Example 3.3 we conclude that L−f is locally invertible. Nevertheless, taking sequence
un(x) = n for x ∈ (0, π), we immediately obtain ‖Lun − f(un)‖ → 0 when n → ∞.
Therefore L− f is not a homeomorphism as well.
Lemma 3.5. Assume that sup f ′(R) < 0. Then operator −∆N − f is coercive.
Proof. Denote β := sup f ′(R). Then, one has

|f(ξ)| ≥ −β|ξ| − |f(0)|, ξ ∈ R

and hence, for every u ∈ D(∆D),

‖f(u)‖ =



∫

Ω

|f(u(x))|2dx




1
2

≥ |β|‖u‖ − |f(0)|
√
|Ω|.
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and, since γ1u = 0

〈Lu|f(u)〉 =
∫

Ω

(−∆u(x)) f(u(x))dx

=
∫

Ω

f ′(u(x))|∇u(x)|2dx+
∫

∂Ω

(γ1u(x)) f(u(x))ds(x) < 0.

Therefore, for every u ∈ D(∆N ), we obtain

‖Lu− f(u)‖2 = ‖Lu‖2 − 2〈Lu|f(u)〉+ ‖f(u)‖2

≥ ‖Lu‖2 + |β|‖u‖2 − C

for some C > 0.

Lemma 3.6. Assume that sup f ′(R) < λ1. Then operator −∆D − f is coercive.

Proof. Denote β := sup(f ′(R) ∪ {0}). Note that for every u ∈ D(∆D) one has

〈Lu|f(u)〉 =
∫

Ω

−∆u(x)f(u(x))dx

=
∫

Ω

f ′(u(x))|∇u(x)|2dx+
∫

∂Ω

γ1u(x)f(u(x))ds(x)

≤ β
∫

Ω

|∇u(x)|2dx+
∫

∂Ω

γ1u(x)f(u(x))ds(x).

Using the Poincaré inequality and the Stokes Theorem we obtain

λ1



∫

Ω

|u(x)|2dx




1
2


∫

Ω

|∇u(x)|2dx




1
2

≤
∫

Ω

|∇u(x)|2dx =
∫

Ω

−∆u(x)u(x)dx

≤



∫

Ω

|u(x)|2dx




1
2


∫

Ω

|∆u(x)|2dx




1
2

for every u ∈ D(∆D). Moreover,

∫

∂Ω

γ1u(x)f(u(x))ds(x) ≤



∫

∂Ω

|γ1u(x)|2ds(x)




1
2


∫

∂Ω

|f(0)|2ds(x)




1
2

≤ ‖γ1‖D(∆D)→L2(Ω)|f(0)|
√
s(∂Ω)



∫

Ω

|∆u(x)|2dx




1
2
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Here

‖γ1‖D(∆D)→L2(Ω) = sup







∫

∂Ω

|γ1u(x)|2



1
2

:



∫

Ω

|∆u(x)|2



1
2

= 1




<∞.

Taking the above into account, we obtain that there exists a constant C > 0 such that

〈Lu|f(u)〉 ≤ β
λ1
‖Lu‖2 + C‖Lu‖.

Define
Ξ :=

{
u ∈ H2(Ω) ∩H1

0 (Ω) : ‖f(u)‖ ≤
√

β
λ1
‖Lu‖

}
.

Taking u ∈ Ξ we instantly obtain that

‖Lu− f(u)‖ ≥ ‖Lu‖ − ‖f(u)‖ ≥
(

1−
√

β
λ1

)
‖Lu‖.

On the other hand, if u ∈
(
H2(Ω) ∩H1

0 (Ω)
)
\ Ξ, then

‖Lu− f(u)‖2 = ‖Lu‖2 − 2〈Lu|f(u)〉+ ‖f(u)‖2 ≥ λ1−β
λ1
‖Lu‖2 − 2C‖Lu‖

for every u ∈ D(∆D).

Lemma 3.7. Assume that f ′(R) = [α, β] ⊂ (ρ(L) ∩ (λmin,∞)). Then L−f is coercive.

Proof. Note that [α, β] ⊂ (λn−1, λn) for some n ∈ N. Take λ = λn−1+λn

2 and Λ given
by (3.1). We obtain that for every u ∈ D(L) one has

‖Lu− f(u)‖ ≥ ‖Lu− λu‖ − ‖f(u)− λu‖ = ‖Λu‖ − ‖f(u)− λu‖.

Since, for every ξ ∈ R,

|f(ξ)− λξ| =

∣∣∣∣∣∣

ξ∫

0

(f ′(τ)− λ) dτ + f(0)

∣∣∣∣∣∣
≤
(
λn−λn−1

2 − ε
)
|ξ|+ |f(0)|,

where ε = min{α− λn−1, λn − β}, it follows

‖f(u)− λu‖ ≤
(
λn−λn−1

2 − ε
)
‖u‖+

√
|Ω||f(0)|.

Hence, ‖Λu‖ ≥ λn−λn−1
2 ‖u‖ and we have

‖Lu− f(u)‖ ≥ ε‖Λu‖.

It is enough to observe that Λ is coercive since Λ ∈ Isom
(
D(L), L2(Ω)

)
.
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Theorem 3.8. If f ′(R) ⊂ ρ(L), then operator L− f is a C1–diffeomorphism of D(L)
onto L2(Ω).

Proof. Due to the Proposition 3.2, the operator L − f is a local diffeomorphism.
Therefore, by Proposition 2.5, it is enough to observe that ‖L− f‖ is coercive which
follows from Lemmas 3.5, 3.6 and 3.7.

Theorem 3.9. Let h ∈ L2(Ω).

(i) If f ′(R) ⊂ ρ(∆D), then problem (Dh) has exactly one solution.
(ii) If f ′(R) ⊂ ρ(∆N ), then problem (Nh) has exactly one solution.

4. FINAL COMMENTS AND EXAMPLES

Let us recall

Theorem 4.1 ([1]). Assume that a function f satisfies the following assumptions:

(i) f(s) ≥ 0 for s ∈ R,
(ii) there exists α < λ1 and ω > 0 such that f(s) ≤ αs+ ω for s ≥ 0,
(iii) f ′(s) < λ1 for s ∈ R.

Then, for every a ∈ (0, 1) and h ∈ C0,a(Ω) there exists a unique C2,a(Ω)–solution to
the problem (Dh).

As it was mentioned, the result obtained in this paper is an extension of Theorem 4.1
under an assumption d ≤ 3, since it allows us to omit a restrictive condition: f(s) ≥ 0.
Moreover, the classical results can not be used to directly obtain Theorem 3.8.

The Banach Fixed Point Theorem requires a Lipschitz continuity of f which is not
assumed. To apply direct method of calculus of variations or Browder–Minty Theorem
one needs to define a functional or operator on whole H1(Ω). To show that it can not
be possible we consider the problem

{
∆u = e2eu + αu on Ω,
u = 0 on ∂Ω,

(4.1)

where Ω = B
(
0, 1

2
)
⊂ R2 and α < λ1. Then f satisfies assumptions of Theorem 3.8.

On the other hand, taking u(x) = ln |ln |x|| we obtain u ∈ H1
0 (Ω), see [6], and

∫

Ω

e2eu(x)
dx =

∫

Ω

dx

|x|2 =∞.

Therefore any proper operator acting between H1
0 (Ω) and

(
H1

0 (Ω)
)∗ can not be defined

on whole H1
0 (Ω).
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