PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Creep model of cement and asphalt (CA) mortar based on micro‑meso structure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
CA mortar, as a filling layer, has been widely used in slab ballastless track. Since the creep deformation directly determines the track regularity and the train ride comfort, we investigated the effect of various stress levels on CA mortar creep. Results showed that the creep strain of CA mortar increased by 10 times when the stress level increased from 10%σp to 40%σp . Furthermore, it was first discovered that creep of CA mortar was attributed to the organic-inorganic interface slip and the propagation of microcracks. This work proposed a new CA mortar creep model based on the micro-meso structure characteristics, and its accuracy of prediction was much higher than previous models, R2 > 0.93.
Rocznik
Strony
art. no. e10, 2023
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, Central South University, Changsha 410075, China
autor
  • Department of Civil Engineering, Central South University, Changsha 410075, China
autor
  • Department of Civil Engineering, Central South University, Changsha 410075, China
  • Department of Physics, City University of Hong Kong, Hong Kong 999077, China
  • Department of Civil Engineering, Central South University, Changsha 410075, China
autor
  • Department of Civil Engineering, Central South University, Changsha 410075, China
Bibliografia
  • 1. Zeng XH, Zhu HS, Qiu XJ, Yang K, Wing P, Xie YJ, Long GC. Deterioration of CA mortar filling layer under cyclical thermal loading. Constr Build Mater. 2020;259: 119678.
  • 2. Zeng XH, Zhu HS, Lan XL, Umar HA, Xie YJ, Long GC. Study on relationships between static mechanical properties and composition of low modulus CA mortar. Constr Build Mater. 2020;274: 121836.
  • 3. Guo W, Hu Y, Gou HY, Du QD, Fang WB, Jiang LZ, Yu ZW. Simplified seismic model of CRTS II ballastless track structure on high-speed railway bridges in China. Eng Struct. 2020;211: 110453.
  • 4. Cao SH, Yang RS, Su CG, Dai F, Liu XY, Jiang XY. Damage mechanism of slab track under the coupling effects of train load and water. Eng Fract Mech. 2016;163:160-75.
  • 5. Xie YJ, Fu Q, Zheng KR, Yuan Q. Dynamic mechanical properties of cement and asphalt mortar based on SHPB test. Constr Build Mater. 2014;70:217-25.
  • 6. Zeng XH, Xie YJ, Deng DH. Conductivity behavior of the fresh CA mortar and its relationship with the fluidity properties. Constr Build Mater. 2012;36:890-4.
  • 7. Xie YJ, Fu Q, Long GC, Zheng KR, Song H. Creep properties of cement and asphalt mortar. Constr Build Mater. 2014;70:9-16.
  • 8. Powers TC. The thermodynamics of volume change and creep. Mater Constr. 1968;1(6):487-507.
  • 9. Rossi P, Godart N, Robert JL, Gervais JP, Bruhat D. Investigation of the basic creep of concrete by acoustic emission. Mater Struct. 1994;27(9):510-4.
  • 10. Jennings HM. A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res. 2000;30(1):101-16.
  • 11. Jennings HM. Refinements to colloid model of C-S-H in cement: CM-II. Cem Concr Res. 2008;38(3):275-89.
  • 12. Rossi P, Tailhan JL, Maou FL, Gaillet L, Martin E. Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cem Concr Res. 2012;42(1):61-73.
  • 13. Rossi P, Tailhan JL, Maou FL. Creep strain versus residual strain of a concrete loaded under various levels of compressive stress. Cem Concr Res. 2013;51:32-7.
  • 14. Bažant ZP. Mathematical modeling of creep and shrinkage of concrete. Amsterdam: Wiley; 1988.
  • 15. Bažant ZP. Prediction of concrete creep and shrinkage: past, present and future. Nucl Eng Des. 2001;203(1):27-38.
  • 16. Zheng W, Tang C. A new multicoefficients creep model for concrete. J Test Eval. 2017;46(1):20160155.
  • 17. Chen P, Zheng W, Wang Y, Du K, Chang W. Strain recovery model for concrete after compressive creep. Constr Build Mater. 2019;199(28):746-55.
  • 18. Saboo N, Kumar P. A study on creep and recovery behavior of asphalt binders. Constr Build Mater. 2015;96(15):632-40.
  • 19. Qin X, Zhu S, Xiang H, Yi J. High temperature properties of high viscosity asphalt based on rheological methods. Constr Build Mater. 2018;186(20):476-83.
  • 20. Li PL, Jiang XM, Guo K, Xue Y, Dong H. Analysis of viscoelastic response and creep deformation mechanism of asphalt mixture. Constr Build Mater. 2018;171(20):22-32.
  • 21. Saeed RA, Bažant ZP, Hon MASCE, Cusatis G, ASCE M. Extended microprestress-solidification theory for long-term creep with diffusion size effect in concrete at variable environment. J Eng Mech 2019;145(2):04018131.
  • 22. Li YL, Sun H, He X, Tan Y. Freeze-thaw damage and creep behavior of cement asphalt composite binder. Constr Build Mater. 2020;245: 118407.
  • 23. Li YL, Sun H, He X, Tan Y. Fatigue damage and creep characteristics of cement emulsified asphalt composite binder. Constr Build Mater. 2020;234: 117416.
  • 24. Wu F, Gao RB, Zou QL, Chen J, Liu W, Peng K. Long-term strength determination and nonlinear creep damage constitutive model of salt rock based on multistage creep test: Implications for underground natural gas storage in salt cavern. Energy Sci Eng. 2020;8(5):1592-603.
  • 25. Li W, Zhu XB, Hong JX, She W, Wang PG, Zuo WQ. Effect of anionic emulsifier on cement hydration and its interaction mechanism. Constr Build Mater. 2015;93:1003-11.
  • 26. Zhang YR, Kong XG, Hou SS, Liu YL, Han S. Study on the rheological properties of fresh cement asphalt paste. Constr Build Mater. 2011;27:534-44.
  • 27. Speight JG. Asphalt, Kirk-Othmer Encycl. Chem. Technol. 2000.
  • 28. Sanjuan MA, Argiz C, Galvez JC, Moragues A. Effect of silica fume fineness on the improvement of Portland cement strength performance. Constr Build Mater. 2015;96:55-64.
  • 29. Poon CS, Kou SC, Lam L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr Build Mater. 2006;20:858-65.
  • 30. Wang T. Research and application of CA mortar for slab ballastless track of high speed railway. Dissertation. Wuhan University of Technology. 2008(in Chinese).
  • 31. Yang JB, Yan PY, Kong XM, Li X. Study on the hardening mechanism of cement asphalt binder. Sci, China. Tech. Sci. 2010; 53:1406-1412(in Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4c82a55-fc85-4f97-b636-57a264414f8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.