PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multimode approach to geometrically non-linear forced vibration of beams carrying point masses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work deals with the geometrically non-linear forced vibrations of beams carrying a concentric mass under different end conditions. Considering the axial strain energy and expanding the transverse displacement in the form of a finite series of spatial functions, the application of Hamilton's principle reduces the vibration problem to a non-linear algebraic system solved by an approximate method developed previously. In order to validate the approach, comparisons are made of the present solutions with those previously obtained by the finite element method. Focus is made here on the analysis of the non-linear stress distribution in the beam with an attached mass. The non-linear forced deflection shapes and their corresponding curvatures are presented for different magnitudes of the attached mass, different excitation levels and different vibration amplitudes.
Czasopismo
Rocznik
Strony
23--33
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Hassan II University of Casablanca, EST, LMPGI, B.P.8012, Oasis Casablanca, Morocco
autor
  • Hassan II University of Casablanca, EST, LMPGI, B.P.8012, Oasis Casablanca, Morocco
  • Mohammed V University in Rabat, ENSET - Rabat, MSSM, B.P.6207, Rabat, Morocco
autor
  • Hassan II University of Casablanca, EST, LMPGI, B.P.8012, Oasis Casablanca, Morocco
  • Mohammed V University in Rabat, EMI-Rabat, LERSIM, Agdal, B.P. 765, Rabat, Morocco
Bibliografia
  • 1. Maltbaek JC. The influence of a concentrated mass on the free vibrations of a uniform beam. J. Mech. Sci. 1961; 3:197-218.
  • 2. Chen Y. On the vibration of beams or rods carrying a concentrated mass. J. Appl. Mech. 1963; 30(2):310.
  • 3. Srinath LS, Das YC. Vibrations of beams carrying mass. J. Appl. Mech. Trans. ASME. 1967. 34(3): 784-785.
  • 4. Laura PAA, Pombo JL, Susemihl EA. A note on the vibrations of a clamped-free beam with a mass at the free end. J. Sound Vib. 1974; 37(2): 161-168.
  • 5. Laura PAA, Maurizi MJ, Pombo JL. A note on the dynamic analysis of an elastically restrained-free beam with a mass at the free end. J. Sound Vib. 1975;41:397-405.
  • 6. Laura PAA, Verniere de Irassar P, Ficcadent GM. A note on transverse vibrations of continuous beams subject to an axial force and carrying concentrated masses. J. Sound Vib. 1983; 86: 279-284.
  • 7. Gurgoze M. A note on the vibrations of restrained beams and rods with point masses. J. Sound Vib. 1984; 9:461-468.
  • 8. Liu WH, Wu JR, Huang CC. Free vibration of beams with elastically restrained edges and intermediate concentrated masses. J. Sound Vib. 1988; 122(2):193-207.
  • 9. Wu JS, Lin TL. Free vibration analysis of a uniform cantilever beam with point masses by an analyticaland-numerical-combined method. J. Sound Vib. 1990;136(2):201-213.
  • 10. Leckie F, Pestel E. Transfer-matrix fundamentals. Int. J. Mech. Sci. 1960; 2(3):137-167.
  • 11. Hamdan M, Abdellatif L. On the numerical convergence of discretization methods for the free vibrations of beams with attached inertia elements. J. Sound Vib. 1994.
  • 12. Gurgoze M. On the alternative formulations of the frequency equation of a Bernoulli-Euler beam to which several spring-mass systems are attached inspan. Development. 1998;134(4): 635-646.
  • 13. Wu JS, Chou HM. A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses. J. Sound Vib. 1999;220(3):451-468.
  • 14. Chang CH. Free vibration of a simply supported beam carrying a rigid mass at the middle. J. Sound Vib. 2000;237;4:733-744.
  • 15. Naguleswaran S. Transverse vibrations of an Euler-Bernoulli uniform beam carrying two particles inspan. Int. J. Mech. Sci. 2001;43: 2737-2752.
  • 16. Naguleswaran S. Transverse vibration of an Euler-Bernoulli uniform beam on up to five resilient supports including ends. J. Sound Vib. 2003;261: 372-384.
  • 17. Lin HY, Tsai YC. Free vibration analysis of a uniform multi-span beam carrying multiple springmass systems. J. Sound Vib. 2007;302(3): 442-456. https://doi.org/10.1016/j.jsv.2006.06.080
  • 18. Maiz S, Bambill DV, Rossit CA, Laura PAA. Transverse vibration of Bernoulli-Euler beams carrying point masses and taking into account their rotatory inertia: Exact solution. J. Sound Vib. 2007; 303(3-5):895-908. https://doi.org/10.1016/j.jsv.2006.12.028
  • 19. Wang J, Qiao P. Vibration of beams with arbitrary discontinuities and boundary conditions. J. Sound Vib. 2007;308(1-2):12-27. https://doi.org/10.1016/j.jsv.2007.06.071
  • 20. Yesilce Y, Demirdag O, Catal S. Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems. Sadhana. 2008;33: 385-401.
  • 21. Yesilce Y, Demirdag O. Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems. Int. J. Mech. Sci. 2008;50:995-1003. https://doi.org/10.1016/j.ijmecsci.2008.03.001
  • 22. Yesilce Y. Effect of axial force on the free vibration of reddy-bickford multi-span beam carrying multiple spring-mass systems. Shock Vib. 2008; 18(5):709-726. https://doi.org/10.1177/1077546309102673
  • 23. Torabi K, Afshari H, Najafi H. Vibration analysis of multi-step Bernoulli-Euler and Timoshenko beams carrying concentrated masses. J. Solid Mech. 2013; 5(4):336-349.
  • 24. Yesilce Y. Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenk. Struct. Eng. Mech. 2015.
  • 25. Saito H, Sato K, Yutani T. Non-linear forced vibrations of a beam carrying concentrated mass under gravity. J. Sound Vib. 1976; 46(4): 515-525.
  • 26. Raju KK, Rao GV. Non-linear vibrations of beams carrying a concentrated mass. J. Sound Vib. 1976; 48(3):445.
  • 27. Gutiérrez RH, Laura PAA. Effect of a concentrated mass on large amplitude, free flexural vibrations of elastic plates and beams. Appl. Acoust. 1984; 17(2): 135-151.
  • 28. Kiichi S, Genji S, Yoshiya M. Non-linear vibrations of beams with attached spring-mass system. Japan Soc. Mech. Eng. 1986;29:2232-2238.
  • 29. Hamdan MN, Jubran BA. Free and forced vibrations of a restrained cantilever beam carrying a concentrated mass. J. King Abdulaziz Univ. Sci. 1991; 3(1):71-83.
  • 30. Pakdemirli M, Nayfeh AH. Nonlinear vibrations of a beam- spring-mass system. J. Vib. Acoust. 1994; 116:433-439.
  • 31. Hamdan MN, Dado MHF. Large amplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J. Sound Vib. 1997; 206(2):151-168.
  • 32. Özkaya E, Pakdemirli M, Öz HR. Non-linear vibrations of a beam-mass system under different boundary conditions. J. Sound Vib. 1997; 199(4): 679-696.
  • 33. Hamdan MN, Shabaneh NH. On the large amplitude free vibrations of a restrained uniform beam carrying an intermediate lumped mass. J. Sound Vib. 1997; 199(5): 711-736.
  • 34. Low KH, Dubey RN. Experimental investigations and shape functions for lateral vibration of axially constrained beams with a concentrated mass at the centre. J. Sound Vib. 1997; 202(3): 446-451.
  • 35. Karlik B, Özkaya E, Aydin S, Pakdemirli M. Vibrations of a beam-mass systems using artificial neural networks. Comput. Struct. 1998; 69(3): 339-347.
  • 36. Pakdemirli M, Ozkaya E. Non-linear vibrations of a beam-mass system with both ends clamped. J. Sound Vib. 1999; 221(3): 491-503.
  • 37. Cheng G, Mei C, Lee RYY. Large amplitude vibration of a cantilever beam with tip mass under random base excitation. Adv. Struct. Eng. 2001; 4(4):203-210.
  • 38. Özkaya E. Non-linear transverse vibrations of a simply supported beam carrying concentrated masses. J. Sound Vib. 2002; 257(3):413-424. https://doi.org/10.1006/jsvi.2002.5042
  • 39. G. Venkateswara Rao, K. Meera Saheb, and G. Ranga Janardhan, “Fundamental frequency for large amplitude vibrations of uniform Timoshenko beams with central point concentrated mass using coupled displacement field method,” J. Sound Vib., vol. 298, no. 1-2, pp. 221-232, 2006.
  • 40. Ghayesh MH, Kazemirad S, Darabi MA. A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions. J. Sound Vib. 2011; 330(22):5382-5400. https://doi.org/10.1016/j.jsv.2011.06.001
  • 41. NikkarA, Bagheri S, Saravi M. Dynamic model of large amplitude vibration of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Lat. Am. J. Solids Struct. 2014;11(2):320-329. https://doi.org/10.1590/S1679-78252014000200010.
  • 42. Souayeh S, Kacem N. Computational models for large amplitude nonlinear vibrations of electrostatically actuated carbon nanotube-based mass sensors. Sensors Actuators A Phys.2014:208: 10-20. https://doi.org/10.1016/j.sna.2013.12.015
  • 43. Barry OR, Oguamanam DCD, Zu JW. Nonlinear vibration of an axially loaded beam carrying multiple mass-spring-damper systems. Nonlinear Dyn. 2014; 77(4):1597-1608. https://doi.org/10.1007/s11071-014-1402-5
  • 44. Malaeke H, Moeenfard H. Analytical modeling of large amplitude free vibration of non-uniform beams carrying a both transversely and axially eccentric tip mass. J. Sound Vib. 2016; 366:211-229. https://doi.org/10.1016/j.jsv.2015.12.003
  • 45. Sadri M, Younesian D, Esmailzadeh E. Nonlinear harmonic vibration and stability analysis of a cantilever beam carrying an intermediate lumped mass. Nonlinear Dyn. 2016; 84; 3:1667-1682. https://doi.org/10.1007/s11071-016-2596-5
  • 46. Lotfan S, Sadeghi MH. Large amplitude free vibration of a viscoelastic beam carrying a lumped mass-spring-damper. Nonlinear Dyn. 2017;90(2): 1053–1075. https://doi.org/10.1007/s11071-017- 3710-z
  • 47. Rahmouni A, Benamar R. A discrete model for geometrically non-linear transverse free constrained vibrations of beams carrying a concentrated mass at various locations. Proc. Int. Conf. Struct. Dyn. 2014:2093-2099.
  • 48. Rahmouni A, Benamar R. Nonlinear transverse vibrations of clamped beams carrying two or three concentrated masses at various locations. MATEC Web Conf. 2016; 83:1-4. https://doi.org/10.1051/matecconf/20168305009
  • 49. Bukhari MA, Barry OR. Nonlinear vibrations of a beam- spring-large mass system. Proc. ASME 2017 Int. Mech. Eng. Congr. Expo. IMECE2017. 2017: 1-7.
  • 50. El Kadiri M, Benamar R, White RG. Improvement of the semi-analytical method, for determining the geometrically non-linear response of thin straight structures. Part I: Application to clamped-clamped and simply supported-clamped beams. J. Sound Vib. 2002;249(2):263-305.
  • 51. Géradin M, Rixen DJ. Mechanical vibrations: theory and application to structural dynamics. 3rd Editio. 2015.
  • 52. El Bikri K, Benamar R, Bennouna MM. Geometrically non-linear free vibrations of clampedclamped beams with an edge crack. Comput. Struct. 2006;84(7):485-502.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4c6fff1-3010-418a-ac1f-a49d44208c5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.