PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel Composite Solid Propellant with High Resistance to Thermo-oxidative Degradation Reactions, Extended Shelf Life, and Superior Combustion Characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxy-terminated polybutadiene (HTPB) pre-polymer is the main constituent that is responsible for conferring high mechanical properties on composite solid propellants. However, HTPB pre-polymer suffers from oxidative degradation reactions that diminish its mechanical properties and shelf life. Composite solid propellant formulations based on an advanced stabilizing agent (anti-oxidant), Flexzone 6-H, with different curing ratios, 0.7 and 1.1, were developed via mixing and casting under vacuum. The developed formulations were subjected to artificial ageing using Vant Hoff,s formula by isothermal heating at 80 °C for up to 35 days. The change in strain with ageing was evaluated using a uni-axial tensile test. The propellant formulation based on a curing ratio of 0.7 demonstrated a high ageing resistance coefficient and an extended service life of up to 15 years, compared with 5 years for higher curing ratio. A propellant grain is considered to be ‘aged out’ at 30% reduction in its maximum strain value. The propellant formulation based on the 0.7 curing ratio exhibited superior thermal stability as it offered a minimum decrease in heat released after ageing using DSC. Additionally, the 0.7 curing ratio formulations exhibited a minimum change in burning rate and pressure exponent with ageing time. It can be concluded that the propellant with 0.7 curing ratio can maintain its mechanical, thermal, and ballistic properties with ageing.
Rocznik
Strony
143--158
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • School of Chemical Engineering, Military Technical College, Kobry Elkoba, Cairo, Egypt
  • Head of Nanotechnology Research Center, Military Technical College, Cairo, Egypt
autor
  • School of Chemical Engineering, Military Technical College, Kobry Elkoba, Cairo, Egypt
autor
  • School of Chemical Engineering, Military Technical College, Kobry Elkoba, Cairo, Egypt
  • School of Chemical Engineering, Military Technical College, Kobry Elkoba, Cairo, Egypt
Bibliografia
  • [1] Cerri, S.; Bohn, M.A.; Menke, K.; Galfetti, L. Ageing of HTPB/Al/AP Rocket Propellant Formulations Investigated by DMA Measurements. Propellants Explos. Pyrotech. 2013, 38(2): 190-198.
  • [2] Tussiwand, G.; Eineder, L.; Mussbach, G.; Bohn, M.A. Non-destructive Ageing State Determination of Solid Rocket Motors Charges. 8th European Workshop On Structural Health Monitoring (EWSHM 2016), Bilbao, Spain, 2016, pp. 5-8.
  • [3] Villar, L.D.; da Silva, R.F.; Diniz, M.F.; Takahashi, M.F.K.; Rezende, L.C. The Role of Antioxidant on Propellant Binder Reactivity During Thermal Ageing. J. Aerosp. Technol. Manag. 2010, 2(2): 163-168.
  • [4] Coquillat, M.; Verdu, J.; Colin, X.; Audouin, L.; Nevie, R. Thermal Oxidation of Polybutadiene. Part 1: Effect of Temperature, Oxygen Pressure and Sample Thickness on the Thermal Oxidation of Hydroxyl-terminated Polybutadiene. Polym. Degrad. Stab. 2007, 92: 1326-1333.
  • [5] Celina, M.; Skutnik Elliott, J.M.; Winters, S.T.; Assink, R.A.; Minier, L.M. Correlation of Antioxidant Depletion and Mechanical Performance During Thermal Degradation of an HTPB Elastomer. Polym. Degrad. Stab. 2006, 91(8): 1870-1879.
  • [6] Désilets S.; Côté, S. Chemical Bond Between Stabilizers and HTPB Binders in Propellants. Propellants Explos. Pirotech. 2000, 25: 186-190.
  • [7] Fiorio, R.; D’hooge, D.R.; Ragaert, K.; Cardon, L. A Statistical Analysis on the Effect of Antioxidants on the Thermal-Oxidative Stability of Commercial Massand Emulsion-Polymerized ABS. Polymers 2019, 11(25): 1-15
  • [8] Coquillat, M.; Verdu, J.; Colin, X.; Audouin, L.; Celina, M. A Kinetic Evaluation of the Thermal Oxidation of a Phenol Stabilised Polybutadiene. Polym. Degrad. Stab. 2008, 93: 1689-1694.
  • [9] Shekhar, H. Effect of Temperature on Mechanical Properties of Solid Rocket Propellants. Def. Sci. J. 2011, 61(6): 529-533.
  • [10] Shekhar, H. Prediction and Comparison of Shelf Life of Solid Rocket Propellants Using Arrhenius and Berthelot Equations. Propellants Explos. Pirotech. 2011, 36(4): 356-359.
  • [11] Cerri, S.; Bohn, M.A.; Menke, K.; Galfetti, L. Ageing Behaviour of HTPB Based Rocket Propellant Formulations. Cent. Eur. J. Energ. Mater. 2009, 6(2): 149-165.
  • [12] Judge, M.D. An Investigation of Composite Propellant Accelerated Ageing Mechanisms and Kinetics. Propellants Explos. Pyrotech. 2003, 28(3): 114-119.
  • [13] Mahanata, A.K.;Pathak, D.D. HTPB-Polyurethane: a Versatile Fuel Binder for Composite Solid Propellant. In: Polyurethane. 2012, Ch. 11, pp. 229-262; ISBN 9789535107262.
  • [14] Göçmez, A.; Erişken, C.; Yilmazer, Ü.; Pekel, F.; Özkar, S. Mechanical and Burning Properties of Highly Loaded Composite Propellants. J. Appl. Polym. Sci. 2002, 67(8): 1457-1464.
  • [15] Sanecka, P.W.; Florczak, B.; Maranda, A. Investigation of Properties of Heterogeneous Solid Rocket Propellants after Accelerated Aging. CHEMIK 2016, 70(1): 23-26.
  • [16] Yongqiang, D.; Jian, Z.; Wei, P.; Xiao, Z. Hydrothermal Ageing Life Model of Composite Solid Propellant Based on Modified Arrhenius Method. Proc. Int. Symp. on Material, Energy and Environment Engineering (ISM3E), 2015, pp. 162-165.
  • [17] Nawwar, M.S.; Wafy, T. Z.; Mustafa, H.E. Performance of Composite Solid Rocket Propellants for Rocket Assisted Projectiles (RAP). Proc. 8th I.C.E.E. Conf., Cairo, Egypt, 2016, 229-242.
  • [18] Zhang, L.; Zheng, X. Experimental Study on Thermal Decomposition Kinetics of Natural Ageing AP/HTPB Base Bleed Composite Propellant. Def. Technol. 2018, 14(5): 422-425.
  • [19] Seyidoglu, T.; Bohn, M.A. Characterization of Ageing Behavior of Butacene Based Composite Propellants by Loss Factor Curves. Propellants Explos. Pirotech. 2017, 42(7): 1-13.
  • [20] Shekhar, H. Studies on Stress-Strain Curves of Aged Composite Solid Rocket Propellants. Def. Sci. J. 2012, 62(2): 90-94.
  • [21] Adel, W.M.; Liang, G. Service Life Prediction of AP/Al/HTPB Solid Rocket Propellant with Consideration of Softening Ageing Behavior. Chin. J. Aeronaut. 2019, 32(2): 361-368.
  • [22] Wu, W.; Zeng, X.; Li, H.; Lai, X.; Li, F.; Guo, J. Synthesis and Characterization of a Novel Macromolecular Hindered Phenol Antioxidant and Its Thermo-oxidative Ageing Resistance for Natural Rubber. J. Macromol. Sci. Part B Phys. 2014, 53(7): 1244-1257.
  • [23] Villar, L.D.; Cicaglioni, T.; Diniz, F.M.; Ferreira Koyama Takahashia, M.; Rezendea, L.C. Thermal Ageing of HTPB/IPDI-based Polyurethane as a Function of NCO/ OH Ratio. Mater. Res. 2011, 14(3): 372-375.
  • [24] Elbasuney, S.; Yehia, M.; Zaky, M.G.; Radwan, M. MWNTs Coated with CuO Particles: A Novel Nano-catalyst for Solid Propellants. J. Inorg. Organomet. Polym. Mater. 2019, 29: 2064-2071.
  • [25] Hocaoğlu, Ő.; Őzbelge, T.; Pekel, F.; Őzkar, S. Ageing of HTPB/AP-based Composite Solid Propellants, Depending on the NCO/OH and Triol/Diol Ratios. J. Appl. Polym. Sci. 2001, 79(6): 959-964.
  • [26] Fahd, A.; Mostafa, H.E.; Elbasuney, S. Certain Ballistic Performance and Thermal Properties Evaluation for Extruded Modified Double-base Propellants. Cent. Eur. J. Energ. Mater. 2017, 14(3): 621-635.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4c576e0-5acd-4358-a2fa-ccb38487a9b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.