Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we present metrology and control methods and techniques for electromagnetically actuated microcantilevers. The electromagnetically actuated cantilevers belong to the micro electro mechanical systems (MEMS), which can be used in high resolution force and mass change investigations. In the described experiments, silicon cantilevers with an integrated Lorentz current loop were investigated. The electromagnetically actuated cantilevers were characterized using a modified optical beam deflection (OBD) system, whose architecture was optimized in order to increase its resolution. The sensitivity of the OBD system was calibrated using a reference cantilever, whose spring constant was determined through thermomechanical noise analysis registered interferometrically. The optimized and calibrated OBD system was used to observe the resonance and bidirectional static deflection of the electromagnetically deflected cantilevers. After theoretical analysis and further experiments, it was possible to obtain setup sensitivity equal to 5.28 mV/nm.
Czasopismo
Rocznik
Tom
Strony
627--642
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., wzory
Twórcy
autor
- Wrocław University of Technology, Faculty of Microsystems Electronics and Photonics, Department of Nanometrology, Janiszewskiego 11/17, Wrocław 50-372, Poland
autor
- Wrocław University of Technology, Faculty of Microsystems Electronics and Photonics, Department of Nanometrology, Janiszewskiego 11/17, Wrocław 50-372, Poland
autor
- Wrocław University of Technology, Faculty of Microsystems Electronics and Photonics, Department of Nanometrology, Janiszewskiego 11/17, Wrocław 50-372, Poland
autor
- Wrocław University of Technology, Faculty of Microsystems Electronics and Photonics, Department of Nanometrology, Janiszewskiego 11/17, Wrocław 50-372, Poland
autor
- Wrocław University of Technology, Faculty of Microsystems Electronics and Photonics, Department of Nanometrology, Janiszewskiego 11/17, Wrocław 50-372, Poland
autor
- Łukasiewicz Research Network, Institute of Microelectronics and Fotonics, Lotników 32/46, Warsaw 02-668, Poland
autor
- Łukasiewicz Research Network, Institute of Microelectronics and Fotonics, Lotników 32/46, Warsaw 02-668, Poland
autor
- Wrocław University of Technology, Faculty of Microsystems Electronics and Photonics, Department of Nanometrology, Janiszewskiego 11/17, Wrocław 50-372, Poland
Bibliografia
- [1] Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930. https://doi.org/10.1103/PhysRevLett.56.930
- [2] Judy, J. W. (2001). Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Materials and Structures, 10(6), 1115-1134. https://doi.org/10.1088/0964-1726/10/6/301
- [3] Algamili, A. S., Khir, M. H. M., Dennis, J. O., Ahmed, A. Y., Alabsi, S. S., Hashwan, S. S. B., & Junaid, M. M. (2021). A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Research Letters, 16(1), 1-21. https://doi.org/10.1186/s11671-021-03481-7
- [4] Woszczyna, M., Gotszalk, T., Zawierucha, P., Zielony, M., Ivanow, Tzv., Ivanowa, K., Sarov, Y., Nikolov, N., Mielczarski, J., Mielczarska, E., & Rangelow, I. W. (2009). Thermally driven piezoresistive cantilevers for shear-force microscopy. Microelectronic Engineering, 86(4), 1212-1215. https://doi.org/10.1016/j.mee.2009.01.043
- [5] Shen, B., Allegretto, W., Hu, M., & Robinson, A. M. (1996). CMOS micromachined cantilever-in-cantilever devices with magnetic actuation. IEEE Electron Device Letters, 17(7), 372-374. https://doi.org/10.1109/55.506371
- [6] Adhikari, R., Kaundal, R., Sarkar, A., Rana, P., & Das, A. K. (2012). The cantilever beam magnetometer: A simple teaching tool for magnetic characterization. American Journal of Physics, 80(3), 225-231. https://doi.org/10.1119/1.3679840
- [7] Hsieh, C. H., Dai, C. L., & Yang, M. Z. (2013). Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors. Sensors, 13(11), 14728-14739. https://doi.org/10.3390/s131114728
- [8] Rhoads, J. F., Kumar, V., Shaw, S. W., & Turner, K. L. (2013). The non-linear dynamics of electromagnetically actuated microbeam resonators with purely parametric excitations. International Journal of Non-Linear Mechanics, 55, 79-89. https://doi.org/10.1016/j.ijnonlinmec.2013.04.003
- [9] Lee, B., Prater, C. B., & King, W. P. (2012). Lorentz force actuation of a heated atomic force microscope cantilever. Nanotechnology, 23(5), 055709. https://doi.org/10.1088/0957-4484/23/5/055709
- [10] Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491-505. https://doi.org/10.1038/nmeth.1218
- [11] Hoogenboom, B. W., Frederix, P. L. T. M., Yang, J. L., Martin, S., Pellmont, Y., Steinacher, M., Zäch, S., Langenbach, E., Heimbeck, H.-J., Engel, A., & Hug, H. J. (2005). A Fabry-Perot interferometer for micrometer-sized cantilevers. Applied Physics Letters, 86(7), 074101-1. https://doi.org/10.1063/1.1866229
- [12] Meyer, G., & Amer, N. M. (1988). Novel optical approach to atomic force microscopy. Applied Physics Letters, 53(12), 1045-1047. https://doi.org/10.1063/1.100061
- [13] Boisen, A., Dohn, S., Keller, S. S., Schmid, S., & Tenje, M. (2011). Cantilever-like micromechanical sensors. Reports on Progress in Physics, 74(3), 036101. https://doi.org/10.1088/0034-4885/74/3/036101
- [14] Gimzewski, J. K., Gerber, Ch., Meyer, E., & Schlittler, R. R. (1994). Observation of a chemical reaction using a micromechanical sensor. Chemical Physics Letters, 217(5), 589-594. https://doi.org/10.1016/0009-2614(93)E1419-H
- [15] Wu, G., Ji, H., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M. F., Chakraborty, A. K., & Majumdar, A. (2001). Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proceedings of the National Academy of Sciences, 98(4), 1560-1564. https://doi.org/10.1073/pnas.98.4.1560
- [16] Nieradka, K., Kapczyńska, K., Rybka, J., Lipiński, T., Grabiec, P., Skowicki, M., & Gotszalk, T. (2014). Microcantilever array biosensors for detection and recognition of Gram-negative bacterial endotoxins. Sensors and Actuators B: Chemical, 198, 114-124. https://doi.org/10.1016/j.snb.2014.03.023
- [17] Helm, M., Servant, J. J., Saurenbach, F., & Berger, R. (2005). Read-out of micromechanical cantilever sensors by phase shifting interferometry. Applied Physics Letters, 87(6), 064101. https://doi.org/10.1063/1.2008358
- [18] Putman, C. A. J., de Grooth, B. G., van Hulst, N. F., & Greve, J. (1992). A theoretical comparison between interferometric and optical beam deflection technique for the measurement of cantilever displacement in AFM. Ultramicroscopy, 42, 1509-1513. https://doi.org/10.1016/0304-3991(92)90474-X
- [19] Putman, C. A. J., de Grooth, B. G., van Hulst, N. F., & Greve, J. (1992). A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. Journal of Applied Physics, 72(1), 6-12. https://doi.org/10.1063/1.352149
- [20] Hu, Z., Seeley, T., Kossek, S., & Thundat, T. (2004). Calibration of optical cantilever deflection readers. Review of Scientific Instruments, 75(2), 400-404. https://doi.org/10.1063/1.1637457
- [21] Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., & Yamada, H. (2005). Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Review of Scientific Instruments, 76(5), 053704. https://doi.org/10.1063/1.1896938
- [22] Nieradka, K., Kopiec, D., Małozięć, G., Kowalska, Z., Grabiec, P., Janus, P., Sierakowski, A., Domański, K., & Gotszalk, T. (2012). Fabrication and characterization of electromagnetically actuated microcantilevers for biochemical sensing, parallel AFM and nanomanipulation. Microelectronic Engineering, 98, 676-679. https://doi.org/10.1016/j.mee.2012.06.019
- [23] Miyatani, T., & Fujihira, M. (1997). Calibration of surface stress measurements with atomic force microscopy. Journal of Applied Physics, 81(11), 7099-7115. https://doi.org/10.1063/1.365306
- [24] Mishra, R., Grange, W., & Hegner, M. (2012). Rapid and reliable calibration of laser beam deflection system for microcantilever-based sensor setups. Journal of Sensors, 2021, 617386. https://doi.org/10.1155/2012/617386
- [25] Naeem, S., Liu, Y., Nie, H. Y., Lau, W. M., & Yang, J. (2008). Revisiting atomic force microscopy force spectroscopy sensitivity for single molecule studies. Journal of Applied Physics, 104(11), 114504. https://doi.org/10.1063/1.3037206
- [26] Lee, J., Beechem, T., Wright, T. L., Nelson, B. A., Graham, S., & King, W. P. (2006). Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 15(6), 1644-1655. https://doi.org/10.1109/JMEMS.2006.886020
- [27] Skwierczyński, J. M., Małozięć, G., Kopiec, D., Nieradka, K., Radojewski, J., & Gotszalk, T. (2011). Radio frequency modulation of semiconductor laser as an improvement method of noise performance of scanning probe microscopy position sensitive detectors. Optica Applicata, 41(2), 323-331.
- [28] Butt, H.-J., & Jaschke, M. (1995). Calculation of thermal noise in atomic force microscopy. Nanotechnology, 6(1), 1. https://doi.org/10.1088/0957-4484/6/1/001
- [29] Ohler, B. (2007). Cantilever spring constant calibration using laser Doppler vibrometry. Review of Scientific Instruments, 78(6), 063701. https://doi.org/10.1063/1.2743272
- [30] Cleveland, J. P., Manne, S., Bocek, D., & Hansma, P. K. (1993). A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments, 64(2), 403-405. https://doi.org/10.1063/1.1144209
- [31] Lévy, R., & Maaloum, M. (2002). Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology, 13(1), 33. https://doi.org/10.1088/0957-4484/13/1/307
- [32] Rast, S., Wattinger, C., Gysin, U., & Meyer, E. (2000). The noise of cantilevers. Nanotechnology, 11(3), 169. https://doi.org/10.1088/0957-4484/11/3/306
Uwagi
1. This work was supported by the National Science Centre, Poland OPUS grant “Nanometrology of Nottingham cooling effect using operational microelectromechanical systems” (project No. 2020/37/B/ST7/03792).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4c424a4-26ba-409b-b1c3-6e9e3444ac69