PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solar Heating for Pit Thermal Energy Storage – Comparison of Solar Thermal and Photovoltaic Systems in TRNSYS 18

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar collectors and photovoltaic panels are devices widely used for heating water for both heating and domestic purposes. Due to the variable nature of solar radiation, it is advisable to include in solar energy-based systems thermal storages that accumulate energy at times of overproduction and discharge it at times of demand. In this paper, we present the results of simulation research to compare the possibility of two different charging systems for a 24000 m3 seasonal pit thermal energy storage (PTES). The first uses electricity generated by photovoltaic panels and converted to heat in an electrode boiler to charge the heat store. The second is utilising a solar collector for this purpose. Based on the simulation calculations carried out in TRNSYS 18, it can be concluded that, from an investment perspective, a system based on solar collectors is more cost-effective. In addition, the installation takes up less space compared to a photovoltaic panel farm.
Twórcy
  • Energoprojekt-Katowice SA, ul. Jesionowa 15, 40-159 Katowice, Poland
  • Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland
autor
  • Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland
  • Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland
Bibliografia
  • 1. Heating – Analysis – IEA [Internet]. IEA. 2021 [cited 2 April 2022]. Available from: https://www.iea.org/reports/heating.
  • 2. Owusu P.A., Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering. 2016; 3: 1167990.
  • 3. Exergy Flow Charts – GCEP [Internet]. Gcep. stanford.edu. [cited 4 April 2022]. Available from: http://gcep.stanford.edu/research/exergycharts.html.
  • 4. Ahamd M. State of the Art Compendium of Macro and Micro Energies. Advances in Science and Technology Research Journal. 2019; 13: 88–109.
  • 5. França R.P., Monteiro A.C.B., Arthur R., Iano Y. Overview of sources of microgrids for residential and rural electrification: a panorama in the modern age. Residential Microgrids and Rural Electrifications. 2022; 69–85.
  • 6. Bloess A., Schill W.-P., Zerrahn A. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Applied Energy. 2018; 212: 1611–1626.
  • 7. Song Z., Ji J., Li Z. Comparison analyses of three photovoltaic solar-assisted heat pumps based on different concentrators. Energy and Buildings. 2021; 251: 111348.
  • 8. Pakere I., Lauka D., Blumberga D. Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant. Energy. 2018; 154: 424–432.
  • 9. Allouhi A. Techno-economic and environmental accounting analyses of an innovative power-to-heat concept based on solar PV systems and a geothermal heat pump. Renewable Energy. 2022; 191: 649–661.
  • 10. Wang D., Orehounig K., Carmeliet J. A Study of District Heating Systems with Solar Thermal Based Prosumers. Energy Procedia. 2018; 149: 132–140.
  • 11. Tian Z., Zhang S., Deng J., Fan J., Huang J., Kong W., Perers B., Furbo S. Large-scale solar district heating plants in Danish smart thermal grid: Developments and recent trends. Energy Conversion and Management. 2019; 189: 67–80.
  • 12. Lumbreras M., Garay R. Energy & economic assessment of façade-integrated solar thermal systems combined with ultra-low temperature district-heating. Renewable Energy 2020; 159: 1000–1014.
  • 13. Rehman H., Hirvonen J., Kosonen R., Sirén K. Computational comparison of a novel decentralized photovoltaic district heating system against three optimized solar district systems. Energy Conversion and Management. 2019; 191: 39–54.
  • 14. Schmidt T., Mangold D., Müller-Steinhagen H. Central solar heating plants with seasonal storage in Germany. Solar Energy. 2004; 76: 165–174.
  • 15. Qu W., Zhang J., Jiang R., Liu X., Zhang H., Gao Y. et al. An energy storage approach for storing surplus power into hydrogen in a cogeneration system. Energy Conversion and Management 2022; 268:116032.
  • 16. Nielsen J.E., Sørensen P.A. Renewable district heating and cooling technologies with and without seasonal storage. Renewable Heating and Cooling. 2016; 197–220.
  • 17. Dahash A., Ochs F., Janetti M.B., Streicher W. Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems. Applied Energy. 2019; 239: 296–315.
  • 18. TRNSYS: Transient System Simulation Tool [Internet]. [cited 18 August 2022]. Available from: https://www.trnsys.com.
  • 19. Renaldi R., Friedrich D. Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK. Applied Energy. 2019; 236: 388–400.
  • 20. Rosato A., Ciervo A., Ciampi G., Scorpio M., Sibilio S. Impact of seasonal thermal energy storage design on the dynamic performance of a solar heating system serving a small-scale Italian district composed of residential and school buildings. Journal of Energy Storage. 2019; 25: 100889.
  • 21. Xu L., Guo F., Hoes P.-J., Yang X., Hensen J.L.M. Investigating energy performance of large-scale seasonal storage in the district heating system of chifeng city: Measurements and model-based analysis of operation strategies. Energy and Buildings. 2021; 247: 111113.
  • 22. Li P., Guo F., Yang X. An inversion method to estimate the thermal properties of heterogeneous soil for a large-scale borehole thermal energy storage system. Energy and Buildings 2022; 263: 112045.
  • 23. Narula K., Filho F.D.O., Chambers J., Patel M.K. Simulation and comparative assessment of heating systems with tank thermal energy storage – A Swiss case study. Journal of Energy Storage. 2020; 32: 101810.
  • 24. Narula K., Filho F.D.O, Villasmil W., Patel M.K. Simulation method for assessing hourly energy flows in district heating system with seasonal thermal energy storage. Renewable Energy 2020; 151: 1250–1268.
  • 25. Bozkaya B., Li R., Zeiler W. A dynamic building and aquifer co-simulation method for thermal imbalance investigation. Applied Thermal Engineering 2018; 144: 681–694.
  • 26. Xie Z., Xiang Y., Wang D., Kusyy O., Kong W., Furbo S., Fan J. Numerical investigations of longterm thermal performance of a large water pit heat storage. Solar Energy. 2021; 224: 808–822.
  • 27. Pavlov G.K., Olesen B.W. Seasonal Ground Solar Thermal Energy Storage – Review of Systems and Applications. In: Proc. of the ISES Solar World Congress, Kassel, Germany 2011, 1–11.
  • 28. Mahon H., O’Connor D., Friedrich D., Hughes B. A review of thermal energy storage technologies for seasonal loops. Energy. 2022; 239: 122207.
  • 29. Pit Thermal Energy Storage (PTES) [Internet]. aalborgcsp.com. [cited 4 August 2022]. Available from: https://www.aalborgcsp.com/business-areas/thermal-energy-storage-tes/pit-thermal-energy-storage-ptes/.
  • 30. Karim A., Burnett A., Fawzia S. Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications. Energies. 2018; 11: 1049.
  • 31. LONGI LR5-66HBD Product Specifications [Internet]. [cited 21 August 2022]. Available from: https://cdn.enfsolar.com/z/pp/ybp60c1bc0f796ce/757605aadaa5e711.pdf.
  • 32. ENSOL Solar collectors CATALOGUE [Internet]. [cited 21 August 2022]. Available from: https://www.ensol.pl/pdf/Catalogue2021SolarThermalSolutions.pdf.
  • 33. ENSOL DIS150 Annex to Solar Keymark Certificate Licence Number [Internet]. 2022 [cited 21 August 2022]. Available from: https://www.dincertco.de/logos/011-7S2978%20F.pdf.
  • 34. Irshad M., Yadav A., Singh R., Kumar A. Mathematical modelling and performance analysis of single pass flat plate solar collector. IOP Conference Series: Materials Science and Engineering. 2018; 404: 012051.
  • 35. Instytut Energetyki Odnawialnej [Internet]. [cited 21 August 2022]. Available from: https://www.ieo.pl/pl/
  • 36. Pakere I., Lauka D., Blumberga D. Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant. Energy. 2018; 154: 424–432.
  • 37. Meyers S., Schmitt B., Vajen K. Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology. Applied Energy. 2018; 212: 1537–1552.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4c2b5b7-27ed-431d-be42-6f38d0eaa790
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.