PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selection of slip systems in confined single crystal gradient plasticity: coupled effects of slip system orientations, latent hardening, and grain boundaries

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In crystal plasticity under prescribed deformation, the incremental material response is potentially non-unique owing to slip system redundancy for most of the crystalline structures. Following Petryk, energy minimizing considerations give the way to select one of these solutions and the set of active systems, which depend on their more or less favorable orientation and their mutual interactions (latent hardening). This variational approach is extended here to confined plasticity in a finite volume, simulating a single crystal embedded in an aggregate. A slip gradient enhanced framework and related micro-hard boundary conditions are considered, using two defect energies introduced by Gurtin and coworkers: the first one takes the slip system polar dislocation densities as internal state variables and the second one is a quadratic potential of the dislocation density tensor. In both cases, micro-hard conditions amount to null flow for the two former quantities. For the classical one dimensional case of a strip in simple shear, the two models yield substantially different solutions, the second one coupling the gradients on the different systems. These results emphasize the necessity for a physically motivated modeling of gradient effects in the vicinity of grain boundary interfaces.
Rocznik
Strony
207--238
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
  • CEA, DAM, DIF, 91297 Arpajon, France
Bibliografia
  • 1. U.F. Kocks, Polyslip in single crystals, Acta Metallurgica, 8, 345–352, 1960.
  • 2. P. Franciosi, A. Zaoui, Multislip tests on copper crystals: a junctions hardening effect, Acta Metallurgica, 30, 2141–215, 1982.
  • 3. G.R. Piercy, R.W. Cahn, A.H. Cottrell, A study of primary and conjugate slip in crystals of alpha brass, Acta Metallurgica, 3, 331–338, 1955.
  • 4. S. Saimoto, Low Temperature Tensile Deformation of Copper Single Crystals Oriented for Multislip, PhD Thesis, M.I.T., Cambridge, Massachussets, 1960.
  • 5. O. Dmitrieva, P.W. Dondl, S. Muller, D. Raabe, Lamination microstructure in shear deformed copper single crystals, Acta Materialia, 57, 3439–3444, 2009.
  • 6. T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning, International Journal of Solids and Structures, 49, 2625–2636, 2012.
  • 7. J.L. Dequiedt, C. Denoual, R. Madec, Heterogeneous deformation in ductile fcc single crystals in biaxial stretching: the influence of slip system interactions, Journal of Mechanics and Physics of Solids, 83, 301–318, 2015.
  • 8. D. Wang, M. Diehl, F. Roters, D. Raabe, On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity, Mechanics of Materials, 125, 70–79, 2018.
  • 9. B. Klusemann, T. Yalcinkaya, M.G.D. Geers, B. Svendsen, Application of non-convex rate dependent gradient plasticity to the modelling and simulation of inelastic microstructure development and inhomogeneous material behavior, Computational Materials Science, 80, 51–60, 2013.
  • 10. G. Lancioni, G. Zitti, T. Yalcinkaya, Rate independent deformation patterning in crystal plasticity, Key Engineering Materials, 651-653, 944–949, 2015.
  • 11. Q.S. Nguyen, Bifurcation and stability of time independent standard dissipative systems, [in:] Q.S Nguyen [ed.], Bifurcation and Stability of Dissipative Systems, CISM Courses and Lectures 327, International Center for Mechanical Science, Springer, Vienna, pp. 45–94, 1993.
  • 12. M. Ortiz, E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, Journal of Mechanics and Physics of Solids, 47, 397–462, 1999.
  • 13. B. Bourdin, G. Francfort, J.J. Marigo, The variational approach to fracture, Journal of Elasticity, 91, 5–148, 2008.
  • 14. K. Pham, H. Amor, J.J. Marigo, C. Maurini, Gradient damage models and their use to approximate brittle fracture, International Journal of Damage Mechanics, 20, 618–652, 2011.
  • 15. H. Petryk, M. Kursa, The energy criterion for deformation banding in ductile single crystals, Journal of Mechanics and Physics of Solids, 61, 1854–1875, 2013.
  • 16. H. Petryk, M. Kursa, Incremental work minimization algorithm for rate independent plasticity of single crystals, International Journal for Numerical Methods in Engineering, 104, 157–184, 2015.
  • 17. M. Ortiz, E.A. Repetto, L. Stainier, A theory of subgrain dislocation structures, Journal of Mechanics and Physics of Solids, 48, 2077–2114, 2000.
  • 18. J. Kratochvil, M. Kruzik, A crystal plasticity model of a formation of a deformation band structure, Philosophical Magazine, 95, 32, 3621–3639, 2015.
  • 19. D. Peirce, R.J. Asaro, A. Needleman, An analysis of non-uniform and localized deformation in ductile single crystals, Acta Metallurgica, 30, 1087–1119, 1982.
  • 20. G. Lancioni, T. Yalcinkaya, A. Cocks, Energy-based non-local plasticity models for deformation patterning, localization and fracture, Proceedings of the Royal Society A, 471, 275, 2015.
  • 21. A. Molinari, Shear bands in a viscoplastic single crystal in tension, Proceedings of the Academy of Sciences, Paris, 306, Série II, 841–846, 1988.
  • 22. L. Kubin, B. Devincre, T. Hoc, Modelling dislocation storage rates and mean free paths in face-centered cubic crystals, Acta Materialia, 56, 6040–6049, 2008.
  • 23. C. Teodosiu, J.L. Raphanel, L. Tabourot, Finite element simulation of the large elastoplastic deformation, [in:] C. Teodosiu, J.L. Raphanel and F. Sidoroff, Large Plastic Deformations, Balkema, Rotterdam, 1991.
  • 24. J.L. Dequiedt, The incidence of slip system interactions on the deformation of FCC single crystals: system selection and segregation for local and non-local constitutive behavior, International Journal of Solids and Structures, 141-142, 1–14, 2018.
  • 25. S. Yefimov, I. Groma, E. Van Der Giessen, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations, Journal of Mechanics and Physics of Solids, 52, 279–300, 2004.
  • 26. L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Scale dependent crystal plasticity framework with dislocation density and grain boundary effects, International Journal of Solids and Structures, 41, 5209–5230, 2004.
  • 27. C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity, International Journal of Solids and Structures, 43, 7268–7286, 2006.
  • 28. M. Kuroda, V. Tvergaard, Studies of scale dependent crystal viscoplasticity models, Journal of Mechanics and Physics of Solids, 54, 1789–1810, 2006.
  • 29. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, 42, 2, 475–487, 1994.
  • 30. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity – I. Theory, Journal of Mechanics and Physics of Solids, 47, 1239–1263, 1999.
  • 31. L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects, Journal of Mechanics and Physics of Solids, 52, 2379–2401, 2004.
  • 32. A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations, Acta Materialia, 54 , 2169– 2179, 2006.
  • 33. H. Petryk, S. Stupkiewicz, A minimal gradient enhancement of the classical continuum theory of crystal plasticity. Part I: the hardening law, Archives of Mechanics, 68, 6, 459– 485, 2016.
  • 34. M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geo- metrically necessary dislocations, Journal of Mechanics and Physics of Solids, 50, 5–32, 2002.
  • 35. I. Erturk, J.A.W. Van Dommelen, M.G.D. Geers, Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories, Journal of Mechanics and Physics of Solids, 57, 1801–1814, 2009.
  • 36. M.E. Gurtin, A. Needleman, Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector, Journal of Mechanics and Physics of Solids, 53, 1–31, 2005.
  • 37. S. Yefimov, E. Van Der Giessen, Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations, International Journal of Solids and Structures, 42, 3375–3394, 2005.
  • 38. M.E. Gurtin, L. Anand, S.P. Lele, Gradient single-crystal plasticity with free energy dependent on dislocation densities, Journal of Mechanics and Physics of Solids, 55, 1853–1878, 2007.
  • 39. J.F. Nye, Some geometrical relations in dislocated solids, Acta Metallurgica, 1, 153–162, 1953.
  • 40. P. Cermelli, M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity, Journal of Mechanics and Physics of Solids, 49, 1539–1568, 2001.
  • 41. A. Arsenlis and D.M. Parks, Crystallographic aspects of geometrically-necessary and statistically stored dislocation density, Acta Materialia, 47, 1597–1611, 1999.
  • 42. N. Ohno, D. Okumura, Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations, Journal of Mechanics and Physics of Solids, 55, 1879–1898, 2007.
  • 43. I. Groma, F.F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Materialia, 51, 1271–1281, 2003.
  • 44. R.J. Asaro, Micromechanics of crystals and polycrystals, Advances in AppliedMechanics, 23, 1–115, 1983.
  • 45. S. Forest, Modeling slip, kink and shear banding in classical and generalized single crystal plasticity, Acta Materialia, 46, 9, 3265–3281, 1998.
  • 46. L. Nicola, E. Van Der Giessen, M.E. Gurtin, Effect of defect energy on strain gradient predictions of confined single crystal plasticity, Journal of Mechanics and Physics of Solids, 53, 1280–1294, 2005.
  • 47. C. Fressengeas, V. Taupin, L. Capolungo, An elasto-plastic theory of dislocation and disclination fields, International Journal of Solids and Structures, 48, 3499–3509, 2011.
  • 48. M.E. Gurtin, A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation, Journal of Mechanics and Physics of Solids, 56, 640–662, 2008.
  • 49. A.J. Vattre, M.J. Demkowicz, Determining the Burgers vectors and elastic strain energies of interface dislocation arrays using anisotropic elasticity theories, Acta Materialia, 61, 5172–5187, 2013.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4c18d5c-05a5-4ad6-a3fc-094ab8b708f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.