PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of Honeycomb Structures Produced by Investment Casting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Investment casting combined with the additive manufacturing technology enables production of the thin-walled elements, that are geometrically complex, precise and can be easy commercialized. This paper presents design of aluminium alloy honeycombs, which are characterized with light structure, internal parallel oriented channels and suitable stiffness. Based on 3D printed pattern the mould was prepared from standard ceramic material subjected subsequently to appropriate heat treatment. Into created mould cavity with intricate and susceptible structure molten AC 44200 aluminium alloy was poured under low pressure. Properly designed gating system and selected process parameters enabled to limit the shrinkage voids, porosities and misruns. Compression examination performed in two directions showed different mechanisms of cell deformation. Characteristic plateau region of stress-strain curves allowed to determine absorbed energy per unit volume, which was 485 or 402 J/mm3 depending on load direction. Elaborated technology will be applied for the production of honeycomb based elements designated for energy absorption capability.
Rocznik
Tom
Strony
76--80
Opis fizyczny
Bibliogr. 12 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
Bibliografia
  • [1] Tiwari, G., Thomas, T. & Khandelwal, R.P. (2018). Influence of reinforcement in the honeycomb structures under axial compressive load. Thin-Walled Structures. 126, 238-245.
  • [2] http://www.al-honeycomb-panels.com/
  • [3] Lei, T., Alexandersen, J., Lazarov, B.S., Wang, F., Haertel, J., De Angelis, S., Sanna, S., Sigmund, O. & Engelbrecht, K. (2018). Investment casting and experimental testing of heat sinks designed by topology optimization. International Journal of Heat and Mass Transfer. 127, 396-412.
  • [4] Piekło, J., Małysza, M. & Dańko, R. (2018). Modelling of the material destruction of vertically arranged honeycomb cellular structure. Archives of Civil and Mechanical Engineering. 18(4), 1300-1308.
  • [5] Mun, J., Yun, B., Ju, J. & Chang, B. (2015). Indirect additive manufacturing based casting of a periodic 3D cellular metal – Flow simulation of molten aluminum alloy. Journal of Manufacturing Processes. 17, 28-40.
  • [6] Berman, B. (2012). 3-D printing. The new industrial revolution. Business Horizons. 55, 155-162.
  • [7] Ngo, T., Kashani, A., Imbalzano, G., Nguyen, K. & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B. 143, 172-196.
  • [8] Levenhagen, N.P. & Dadmun, M.D. (2018). Interlayer diffusion of surface segregating additives to improve the isotropy of fused deposition modeling products. Polymer. 152, 35-41.
  • [9] Kuo, C.C., Liu, L.C., Teng, W.F., Chang, H.Y., Chien, F.M., Liao, S.J., Kuo, W.F. & Chen, C.M. (2016). Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Composites Part B. 86, 36-39.
  • [10] Singh, D., Singh, R. & Singh Boparai, K. (2018). Development and surface improvement of FDM pattern based investment casting of biomedical implants: A state of art review. Journal of Manufacturing Processes. 31, 80-95.
  • [11] Puga, H., Carneiro, V.H., Correira, P., Vieira, V., Barbosa, J. & Meireles, J. (2017). Mechanical behavior of honeycomb lattices manufactured by investment casting for scaffolding applications. Journal of Materials: Design and Applications. 231, 73-81.
  • [12] Xu, M., Li, H., Chandrashekhara, K., Lekakh, S. & Richards, V. (2013). Thermo-mechanical properties of SLA pattern materials and their effect on stress in investment shell moulds. American Foundry Society Proceedings. 1-8.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4bfb8be-cecf-4a10-988e-96980aed1114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.