PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the 2014 Major Baltic Inflow on benthic fluxes of ferrous iron and phosphate below the permanent halocline in the southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The impact of 2014 Major Baltic Inflow (MBI) on ferrous iron (FFe(II)) and phosphate (FPO43–) benthic fluxes was investigated. Sampling took place few months after the MBI, in August 2015, and over one year after the inflow, in February 2016. Materials were collected from three sites (depth of 106–108 m) located in the Gdańsk Deep. Total dissolved iron, Fe(II), phosphate, H2S and sulfate were analyzed in bottom and pore water. Benthic fluxes were estimated using Fick’s first law. All fluxes were directed from sediment. FFe(II) ranged from 0.31 × 10–2 to 1.25 × 10–2 μmol m–2 hr–1 and FPO43– from 1.53 to 2.70 μmol m–2 hr–1. At the deepest site, FPO43– was similar in both seasons, while at two other sites fluxes in August 2015 were 40–50% smaller than in February 2016. The increase in bottom water oxygen after the MBI enhanced Fe(oxyhydr)oxides formation. As a consequence, bottom and pore water concentrations of Fe(II) and FFe(II), decreased. Adsorption of phosphate onto Fe(oxyhydr)oxides resulted in binding of P in surface sediment and lower FPO43– in August 2015. This was particularly evident at the shallowest site. The reductive dissolution of Fe(oxyhydr)oxides and desorption of P during the subsequent months resulted in higher FPO43– in February 2016.
Słowa kluczowe
Rocznik
Strony
275--287
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
autor
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
Bibliografia
  • [1]. Almroth, E., Tengberg, A., Andersson, J.H., Pakhomova, S. & Hall, P.O.J. (2009). Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea. Cont. Shelf Res. 29: 807–818.
  • [2]. Andrulewicz, E. & Witek, Z. (2002). Antropogenic pressure and environmental effects on the Gulf of Gdańsk: recent Management Efforts. In G. Schernewski & U. Schiewer (Eds.), Baltic Coastal Ecosystems (pp. 124–139). Springer-Verlag, Berlin Heidelberg.
  • [3]. Balzer, W. (1986). Forms of phosphorus and its accumulation in coastal sediments of Kieler Bucht. Ophelia 26(1): 19–35.
  • [4]. Berner, R.A. (1977). Stoichiometric models for nutrient regeneration in anoxic sediment. Limnol. Oceanogr. 22(5): 781–786.
  • [5]. Bolałek, J. (1992). Phosphate at the water-sediment interface in Puck Bay. Oceanologia. 33: 159–182.
  • [6]. Boudreau, B.P. (1996). The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta. 60(16): 3139–3142.
  • [7]. Brodecka, A., Majewski, P., Bolałek, J. & Klusek, Z. (2013). Geochemical and acoustic evidence for the occurrence of methane in sediments of the Polish sector of the southern Baltic Sea. Oceanologia 55: 951–978.
  • [8]. Canfield, D.E. (1993). Organic matter oxidation in marine sediments. In R. Wollast, F.T. Mackenzie & L. Chou (Eds.), Interactions of C, N, P and S Biogeochemical Cycles and Global Change (pp. 333–363). NATO ASI Series 4. Springer.
  • [9]. Canfield, D.E., Jørgensen, B.B., Fossing, H., Glud, R., Gundersen, J. et al. (1993). Pathways of organic carbon oxidation in three continental marine sediments. Mar. Geol. 113(1–2): 27–40.
  • [10]. Carman, R. & Rahm, L. (1997). Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper. J. Sea Res. 37(1–2): 25–47.
  • [11]. Denis, L. & Grenz, C. (2003). Spatial variability in oxygen and nutrient fluxes at the sediment-water interface on the continental shelf in the Gulf of Lions (NW Mediterranean). Oceanol. Acta 26: 373–389.
  • [12]. Dijkstra, N., Slomp, C.P. & Behrends, T. (2016). Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea. Chem. Geol. 438: 58–72.
  • [13]. Glud, R.N., Gundersen, J.K., Jørgensen, B.B., Revsbech, N.P. & Schulz, H.D. (1994). Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Res. 41(11–12): 1767–1788.
  • [14]. Graca, B., Witek, Z., Burska, D., Białkowska, I., Łukawska-Matuszewska, K. et al. (2006). Pore water phosphate and ammonia below the permanent halocline in the southeastern Baltic Sea and their benthic fluxes under anoxic conditions. J. Mar. Syst. 63(3–4): 141–154.
  • [15]. Graca, B. (2009). The Dynamics of Nitrogen and Phosphorus Transformations in Sediment–Water Interface in the Gulf of Gdańsk. University of Gdańsk. Gdańsk. (In Polish).
  • [16]. Grasshoff, K., Kremling, K. & Ehrhardt, M. (1999). Methods of seawater analysis 3., completely rev. and extended ed. Wiley-VCH. Weinheim.
  • [17]. Hartnett, H.E., Keil, R.G., Hedges, J.I. & Devol, A.H. (1998). Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391: 572–574.
  • [18]. Ignatieva, N.V. (1999). Nutrient exchange across the sediment-water interface in the eastern Gulf of Finland. Boreal Env. Res. 4: 295–305.
  • [19]. Ingall, E.D., Bustin, R.M. & Van Cappellen, P. (1993). Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57(2): 303–316.
  • [20]. Jankowski, A. (1996). Vertical water circulation in the southern Baltic and its environmental implications. Oceanology 38: 485–503.
  • [21]. Jäntti, H. & Hietanen, S. (2012). The effects of hypoxia on sediment nitrogen cycling in the Baltic Sea. Ambio 41(2): 161–169.
  • [22]. Jensen, H.S., Mortensen P.B., Andersen F.O., Rasmussen E. & Jensen A. (1995). Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol. Oceanogr. 40(5): 908–917.
  • [23]. Johnson, K.S., Chavez, F.P. & Friederich, G.E. (1999). Continental-shelf sediment as a primary source of iron for coastal plankton. Nature 398: 697–700.
  • [24]. Jørgensen, B.B. (1982). Mineralization of organic matter in the sea bed – The role of sulfate reduction. Nature. 296: 643–645.
  • [25]. Jørgensen, B.B., Bang, M. & Blackburn, T.H. (1990). Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Mar. Ecol. Prog. Ser. 59: 39–54.
  • [26]. Klump, J.V. & Martens, C.S. (1981). Biogeochemical cycling in an organic rich coastal marine basin: II. Nutrient sediment-water exchange processes. Geochim. Cosmochim. Acta 45(1): 101–121.
  • [27]. Krom, M.D. & Berner, R.A. (1980). Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25(5): 797–806.
  • [28]. Kruk-Dowgiałło, L. & Szaniawska, A. (2008). Gulf of Gdańsk and Puck Bay. In U. Schiewer (Ed.), Ecology of Baltic Coastal Water (pp. 139–166). Ecological Studies 197: Springer-Verlag, Berlin Heidelberg.
  • [29]. Ku, W.C., Di Giano, F.A. & Feng, T.H. (1978). Factors affecting phosphate adsorption equilibria in lake sediments. Wat. Res. 12(12): 1069–1074.
  • [30]. Lavery, P.S., Oldham, C.E. & Ghisalberti, M. (2001). The use of Fick’s First Law for predicting porewater nutrient fluxes under diffusive conditions. Hydrol. Process. 15: 2435– 2451.
  • [31]. Lehtoranta, J. & Heiskanen, A.S. (2003). Dissolved iron: phosphate ratio as an indicator of phosphate release to oxic water of the inner and outer coastal Baltic Sea. Hydrobiologia 492(1–3): 69–84.
  • [32]. Lehtoranta, J., Ekholm, P. & Pitkänen, H. (2009). Coastal eutrophication thresholds: A matter of sedyment microbiol processes. Ambio 38(6): 303–308.
  • [33]. Li, Y-H. & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38(5): 703–714.
  • [34]. Łukawska-Matuszewska, K. & Burska, D. (2011). Phosphate exchange across the sediment – water interface under oxic and hypoxic/anoxic conditions in the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 40(2): 57–71.
  • [35]. Łukawska-Matuszewska, K. & Kiełczewska, J. (2016). Effects of near-bottom water oxygen concentration on biogeochemical cycling of C, N and S in sediments of the Gulf of Gdańsk (southern Baltic). Cont. Shelf Res. 117: 30–42.
  • [36]. Łukawska-Matuszewska, K. & Bołatek J. (2008). Spatial distribution of phosphorus forms in sediments in the Gulf of Gdańsk (southern Baltic Sea). Cont. Shelf Res. 28(7): 977–990.
  • [37]. Millero, F.J., Sotolongo, S. & Izaguirre, M. (1987). The oxidation kinetics of Fe(II) in seawater. Geochim. Cosmochim. Acta 51(4): 793–801.
  • [38]. Mohrholz, V., Naumann, M., Nausch, G., Krüger, S. & Gräwe, U. (2015). Fresh oxygen for the Baltic Sea – An exceptional saline inflow after a decade of stagnation. J. Mar. Sys. 148: 152–166.
  • [39]. Mortimer, C.H. (1941). The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29(1): 280–329.
  • [40]. Mortimer, R.J.G., Davey, J.T., Krom, M.D., Watson, P.G., Frickers, P.E. et al. (1999). The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber Estuary. Estuar. Coast. Shelf Sci. 48(6): 683–699.
  • [41]. Nausch, M., Nausch, G., Lass, H.U., Mohrholz, V., Nagel, K. et al. (2009). Phosphorus input by upwelling in the eastern Gotland Basin (Baltic Sea) in summer and its effects on flamentous cyanobacteria. Estuar. Coast. Shelf Sci. 83(4): 434–442.
  • [42]. Noffke, A., Sommer, S., Dale, A.W., Hall, P.O.J. & Pfannkuche, O. (2015). Benthic nutrient fluxes in the Eastern Gotland Basin (Baltic Sea) with particular focus on microbial mat ecosystems. J. Mar. Sys. 158: 1–12.
  • [43]. Pakhomova, S.V., Hall, P.O.J., Kononets, M.Y., Rozanov, A.G., Tengberg, A. et al. (2007). Fluxes of iron and manganese across the sediment-water interface under various redox conditions. Mar. Chem. 107(3): 319–331.
  • [44]. Raiswell R. & Canfield D.E. (2012). The iron biogeochemical cycle. Past and Present. Geochemical Perspectives 1. European Association of Geochemistry. Retrived June 6, 2016, http://www.geochemicalperspectives.org/online/ v1n1.
  • [45]. Rak, D. (2016). The inflow in the Baltic Proper as recorded in January–February 2015. Oceanologia 58: 241–247.
  • [46]. Reeburgh, W.S. (1983). Rates of biogeochemical processes in anoxic sediments. Ann. Rev. Earth Planet. Sci. 11: 269–298.
  • [47]. Reed, D.C., Slomp, C.P. & Gustafsson, B.G. (2011). Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: Acoupled benthic-pelagic model of a coastal system. Limnol. Oceanogr. 56(3): 1075–1092.
  • [48]. Rickard, D. & Luther, G.W. (1997). Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125 degrees C: the mechanism. Geochim. Cosmochim. Acta 61(1): 135–147.
  • [49]. Rothe, M., Kleeberg, A. & Hupfer, M. (2016). The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth-Sci. Rev. 158: 51–64.
  • [50]. Rozan, T.F., Taillefert, M., Trouwborst, R.E., Glazer, B.T. Ma, S. et al. (2002). Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms. Limnol. Oceanogr. 47(5): 1346–1354.
  • [51]. Ruttenberg, K.C. & Berner, R.A. (1993). Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57(5): 991–1007.
  • [52]. Rydin, E., Malmaeus, J.M., Karlsson, O.M. & Jonsson, P. (2011). Phosphorus release from coastal Baltic Sea sediments as estimated from sediment profiles. Estuar. Coast. Shelf Sci. 92(1): 111–117.
  • [53]. Santschi, P., Höhener, P., Benoit, G. & Buchholtz-ten Brink, M. (1990). Chemical processes at the sediment water interface. Mar. Chem. 30: 269–315.
  • [54]. Slomp, C.P., Epping, E.H.G., Helder, W. & Raaphorst, W.V. (1996). A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. J. Mar. Res. 54(6): 1179–1205.
  • [55]. Srithongouthai, S., Sonoyama, Y., Tada, K. & Montani, S. (2003). The influence of environmental variability on silicate exchange rate between sediment and water in a shallow-water coastal ecosystem, the Seto Inland Sea, Japan. Mar. Pollut. Bull. 47: 10–17.
  • [56]. Stumm, W. & Morgan, J.J. (1981). Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley-Interscience Publication, John Wiley and Sons, New York.
  • [57]. Sundby, B., Anderson, L.G., Hall, P.O.J., Iverfeldt, A., Rutgers van der Loeff, M. et al. (1986). The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim. Cosmochim. Acta 50: 1281–1288.
  • [58]. Sundby, B., Cobeil C., Silverberg N. & Mucci A. (1992). The phosphorus cycle in coastal marine sediments. Limnol. Oceanogr. 37(6): 1129–1145.
  • [59]. Suplińska, M.M. (2002). Vertical distribution of 137Cs, 210Pb, 226Ra and 239, 240Pu in bottom sediments from the Southern Baltic Sea in the years 1998–2000. Nukleonika. 47(2): 45–52.
  • [60]. Szczepańska, T. & Uścinowicz, Sz. (1994). Geochemical atlas of the southern Baltic Sea: 1:500,000. Polish Geological Institute, Warsaw. (In Polish).
  • [61]. Tengberg, A., Ståhl, H., Gust, G., Muller, V., Arning, U. et al. (2004). Intercalibration of benthic flux chambers: I. Accuracy of flux measurements and influence of chamber hydrodynamics. Progress in Oceanography. 60(1): 1–28.
  • [62]. Thamdrup, B. & Canfield, D.E. (1996). Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol. Oceanogr. 41(8): 1629–1650.
  • [63]. Urban, N.R., Dinkel, C. & Wehril, B. (1997). Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis sampler. Aquat. Sci. 59: 1–25.
  • [64]. Viktorsson, L., Ekeroth, N., Nilsson, M., Kononets, M. & Hall, P.O.J. (2013). Phosphorus recycling in sediments of the central Baltic Sea. Biogeosciences 10: 3901–3916.
  • [65]. Warzocha, J. (1995). Classification and structure of macrofaunal communities in the southern Baltic. Arch. Fish. Mar. Res. 42: 225–237.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4bde7eb-d4ec-4bfb-a9fc-0c29d9232940
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.