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Abstract
The paper is devoted to the optimization of the microstructure parameters of a porous medium under thermo-mechanical load-
ing. Four different criteria related to the properties of the porous material have been proposed and numerically implemented. To 
solve a multiobjective problem, a novel method based on the coupling of differential evolution and elements of game theory is 
used. The proposed algorithm features an appropriate balance between exploration and exploitation of objective space, which is 
necessary for the successful optimization of these types of tasks with the use of numerical simulations. The model of the ther-
mo-elastic porous material is composed of two-scale direct analysis based on a numerical homogenization. Direct thermoelastic 
analysis with representative volume element (RVE) and finite element method (FEM) is performed. Numerical example of the 
optimization illustrating the usefulness of the proposed method is included.

Keywords: multiobjective optimization, thermoelasticity, porous materials, multiscale problem, representative volume ele-
ment, differential evolution, game theory

*�Corresponding�author:�adam.dlugosz@polsl.pl
ORCID�ID’s:�0000-0003-4529-4201�(A.�Długosz),�0000-0001-9855-050X�(T.�Schlieter)
©�2022�Authors.�This�is�an�open�access�publication,�which�can�be�used,�distributed�and�reproduced�in�any�medium�according�to�the�
Creative�Commons�CC-BY�4.0�License�requiring�that�the�original�work�has�been�properly�cited.

1. Introduction

A multiscale analysis is an important method in the 
design process of advanced materials, one in which 
geometry and properties of microstructure are taken 
into consideration. The microstructure of materials 
can strongly influence physical properties, such as 
strength, heat conductivity, electrical conductivity, 
density etc. Microscale characteristics play a crucial 
role in the behavior of materials such as porous ma-
terials or materials reinforced with fibers or particles. 
A microstructure composed of more than one material 
with dissimilar physical properties can provide prop-
erties which would not be available to be obtained 

using a homogenous material (Buryachenko, 2007; 
Zohdi & Wriggers, 2005). The numerical simulation 
of such structures in one scale is a very computation-
ally demanding task as it would require extremely fine 
mesh and complex models in order to adequately re-
flect the differences in properties of the microstructure 
sections. For this reason, multiscale modelling can be 
applied to reduce the complexity of models concern-
ing two or more scales. Many phenomena happening 
on a different magnitudes of scale and interacting with 
each other can be investigated in the multiscale mod-
el. For example, on the macroscale, we can investigate 
mechanical and thermal boundary conditions (loads, 
supports etc.), whie in the meso- and microscales, we 
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can identify inclusions, cavities and even defects in 
the crystal lattice (Auriault et al., 2009; Fish, 2006). 
Multiscale modelling can even be used in problems 
concerning effects at a molecular level. In order to 
analyze the behavior of a system at the macroscale 
it is necessary to establish information on effective 
material properties. In the process of homogenization, 
a heterogenous material is transformed into a homog-
enous one described by effective material properties 
obtained through microscale analyses. In the case of 
a simple microstructure geometry, analytical solu-
tions can be used, although it is necessary to employ 
numerical methods for more complex shapes. The 
boundary element method was used to perform nu-
merical homogenization of porous structures (Ptaszny 
& Hatłas, 2018), however, FEM is the most popular 
method used for numerical homogenization due to 
its universal applicability and availability in the CAE 
software. Multiobjective optimization problems con-
cerning multiscale models are remarkably demanding 
computational tasks. During the optimization process, 
in order to search the solution space for desirable de-
signs, it is necessary to obtain values of optimization 
functions multiple times. In the case of a multiscale 
problem, each analyzed candidate solution addition-
ally requires multiple analyses at the microscale to 
perform numerical homogenization. For this reason, 
an efficient multiobjective optimization tool is crucial 
to govern the optimization process in such a problem 
to achieve satisfying results in a limited time. This pa-
per is an extension of the previous works in this area, 
in which different optimization methods and models 
of porous media were considered (Długosz, 2014; 
Długosz & Schlieter, 2016, 2018).

2. Formulation of  
the two-scale thermo-elastic problem

Numerical homogenization utilizing the RVE concept 
and FEM is carried out to solve the two-scale thermo-
elastic problem for a porous structure. The aim of ho-
mogenization is to determine effective material prop-
erties of a non-homogenous structure and use them 
to solve macroscale problems. For thermo-elastic 
problems, the determined properties include elasticity 
constants, thermal expansion coefficients or thermal 
conductivity coefficients. The thermal expansion co-
efficient does not require homogenization in analyzed 
example, as it does not depend on the geometric con-
figuration of the microstructure (Terada et al., 2010). 
The linear thermoelasticity problem is described by 
a set of partial differential equations of heat conduc-

tion and elasticity, considering thermal strains (Beer, 
1983):

kT,ii = 0 (1)

� � � � � �u u Ti jj j ji T i, , ,( ) ( )� � � � �3 2 0  (2)

where: k – thermal conductivity; T – temperature, 
u – displacement; αT – linear expansion coefficient;  
m, l – Lamé constants. 

The boundary of the body is defined by the parts of 
the boundary where thermal and mechanical boundary 
conditions are applied. To solve the thermo-mechanical 
boundary value problem, FEM is used (Zienkiewicz 
et al., 2005). Partial differential equations governing the 
problem are discretized and transformed into a system 
of algebraic equations. After taking into consideration 
boundary conditions, a resulting system of equations in 
the matrix form is obtained:

KTT = Q (3)

KMU = F + FT (4)

where: KT, KM – global matrices of thermal conduc-
tivity and stiffness, respectively, assembled by the 
aggregation of local matrices according to the FEM 
discretization scheme; T, Q, U, F – global vectors of 
temperatures, heat fluxes, displacement, and mechan-
ical loads, respectively; FT – a vector of loads due to 
thermal strain obtained on the basis of a temperature 
gradient from Equation (3).

As weak coupling between physical fields is as-
sumed, thermal and mechanical analyses are solved in 
a successive manner. Coupling is realized by transfer-
ring loads into subsequent analyses. A set of assump-
tions is taken into consideration in the process of nu-
merical homogenization using RVE, including:

 – principle of scale separation:

l
L

<< 1
 

(5)

where l and L are characteristic dimensions of the RVE 
and in the macro scale;

 – averaging theorem:

��� � ��
1

�
�

�RVE
RVEd

RVE

( ) 

 

(6)

where 〈⋅〉 denotes the average of a given field over the 
volume V of the RVE;
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 – Hill condition provides the equality of the aver-
aged micro-scale energy density and the mac-
ro-scale energy density at the selected point of 
macro-structure corresponding to the RVE:

〈σijεij〉 = 〈σij〉 〈εij〉 (7)

where σij and εij are stress and strain tensors, respec-
tively.

For the heat conduction problem, the Hill condi-
tion takes the form:

〈T,i qi〉 = 〈T,i〉 〈qi〉  (8)

where T,i and qi are temperature gradient and heat flux, 
respectively.

Numerical homogenization using the RVE ap-
proach with periodic boundary conditions is used. FEM 
analysis in the microscale is performed to obtain av-
erage stress and heat fluxes in RVE to determine the 
effective material properties according to Equation (6).

Hooke’s law in the microscale takes the following 
form:

〈σij〉 = c′ijkl 〈εij〉  (9)

〈qi〉 = k′ij 〈T,i〉  (10)

The tensor of elastic constants c′ijkl is symmetric. 
The RVE is described by 9 independent material con-
stants for 3D problems. Using Voight notation, the ten-
sor of elastic constants can be written in the form:
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(11)

The tensor of heat conduction coefficients k′ij for 
non-crystalline anisotropic materials takes the form:
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  (12)

Determining effective elastic constants requires 
running six analyses for the elasticity problem and the 
determination of effective thermal constants and three 
analyses of the heat conduction problem. Initial uni-
tary strain is applied to the RVE model, and microscale 
analysis is performed to solve a single column or row 

of the tensor of effective elastic constraints. The same 
approach is used to calculate the values of elements of 
the tensor of effective thermal constants. In total, there 
are 9 microscale analyses required as a prerequisite 
to eventually solving a macroscale analysis resulting 
in obtaining a value of optimization functional. MSC 
Mentat/Marc software was used for FEM computations 
in both micro- and macroscale (MSC Software Corpo-
ration, 2019). Automatic generation of models for the 
multiscale analysis was performed utilising an in-house 
procedure implemented in the C++ programming lan-
guage and internal MSC script language.

3. Optimization method

The idea of multiobjective optimization is not to op-
timize a single criterion, but a vector of criteria at the 
same time, thus a result of such an algorithm run is 
a set of non-dominated solutions obtained for the con-
tradictory criteria. These solutions are optimal in the 
Pareto sense (Coello Coello, 2005). When designing 
the microstructure of a porous medium under thermal 
and mechanical loading, more than one criterion should 
obviously be considered. In the considered problem, 
four different criteria are proposed and formulated in 
the next paragraph. Such criteria calculated on the basis 
of numerical FEM calculations caused that functions 
are very often difficult to optimize using traditional op-
timization techniques. The main reasons for this are: 
contradiction between criteria, discontinuous objec-
tive space, non-convex of the Pareto fronts, existence 
of a large number Pareto fronts. Of course, the crite-
ria defined in this way do not always have to have all 
the above-mentioned features, however, knowledge of 
their exact characteristics for real problems is difficult 
or impossible to be achieved. In such situations, a very 
good choice is to use methods based on metaheuristic 
algorithms (Vesterstrom & Thomsen, 2004). Moreover, 
metaheuristic algorithms (e.g. evolutionary methods) 
naturally process sets of solutions, so they are conve-
nient to be used for multiobjective optimization tasks. 
A multiobjective optimization method which couples 
a differential evolution algorithm (Das & Suganthan, 
2011; Storn & Price, 1997) and elements of game 
theory called DEGT is developed to solve considered 
a multiscale problem.

The idea behind coupling differential evolution 
and elements of a game theory comes down to treat-
ing objectives as players, playing a cooperative game, 
trying to improve their respective objectives with 
the resources given and sharing the information with 
each other, iteratively looking for a Nash equilibrium 
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(Fudenberg & Tirole, 1991; Osborne & Rubinstein, 
1994). Each player is given a part of the design vari-
able vector at random as their resource, while the rest 
of the vector is fixed and determined by other players’ 
choices. To ensure the diversification of solutions, the 
assignment of resources is changed in a way that each 
design variable is modified by one and only one play-
er. The assignment of resources is changed after each 
of the players makes his move. The player’s move is 
to run the single-objective optimization process, using 
a differential evolution algorithm to improve one objec-
tive at a time using the resources allocated.

The general idea of DEGT is shown as a pseudo-
code in Figure 1. In the first step, a problem needs to be 
defined, including the expression of objective functions 

and design parameters. Players in the game are linked 
to certain objectives at this point. The first solution 
is sought concerning the first objective, and then the 
process is followed by playing consecutive coopera-
tive games using the DE optimizer by each of the play-
ers. Optimization proceeds iteratively, new solutions 
are saved if they are non-dominated and otherwise 
discarded. After finishing satisfying the termination 
condition, the process is concluded with post-optimi-
zation tasks. The algorithm is comprehensively tested 
using typical benchmark functions and performance 
metrics and compared with the algorithms NSGA-II 
and NSGA-III. DEGT algorithm was proven to be ef-
ficient and competitive with the compared algorithms 
(Schlieter, 2021). 

i ← 1

Perform single objective DE optimization on objective 1;

Save design variable vector of best solution S
i
;

Calculate and save values of remaining objectives;

while termination condition 

 if i% n
obj
=1

  assign design variables to objectives;

 end-if

 Set values of fixed design variables according to solution S
i-1
;

 Perform single objective DE optimization on objective 1+i% n
obj
;

 Save design variable vector of best solution S
i
;

 Calculate values of remaining objectives;

 if solution S
i
 is non-dominated

  save solution S
i
;

  remove saved solutions dominated by S
i
;

 end-if

 i ← i+1

end-while

Fig. 1. DEGT pseudocode

4. Formulation of  
the optimization criteria

Objectives in the optimization problem are devoted to 
the minimization of maximal displacements, minimiza-
tion of maximal equivalent stress, maximization of the 
heat flux and maximization of porosity, which is relat-
ed to the total mass and cost of the structure. These ob-
jectives are examples of conditions required of porous 
mechanical systems, although other criteria based on 
specific needs can be formulated. Values of functionals 
f1 and f2 used as objectives are computed using FEM 
simulations at macroscale, supplemented by FEM sim-
ulations at microscale, required in the process of numer-
ical homogenization. Objectives f3 and f4 are obtained in 

the microscale. The geometry of the microstructure, de-
scribed by design variables, is changed to fit the declared 
needs, formally described by Functionals (13)–(16):

 – minimization of the maximal translational dis-
placement of a system under a given load:

min max( )
x
f u1 =

  
(13)

 – minimization of the maximal value of the equivalent 
(von Mises) stress of a system under a given load:

min max( )
x eqf2 � �

  
(14)

 – maximization of thermal conductivity in the direc-
tion along the axis of the bar: 

max
x
f k3 11=   (15)
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 – maximization of porosity of the microstructure: 

max
x

por

RVE

f

d

d
por

RVE

4 �
�

�

�

�

�

�

  (16)

Values of the aforementioned functionals are cal-
culated numerically by means of FEM in MSC Patran/
Nastran and MSC Marc/Mentat software based on 
a parametric model. Functionals f1 and f2 are calculat-
ed by running a static structural analysis under a giv-
en load. These functionals are obtained in macroscale 
analyses proceeded by a series of microscale analyses 
to establish values of effective material properties. 
Functional f3 is calculated by running a thermal anal-
ysis of RVE at microscale. Functional f4 is calculated 
on the basis of the geometry of the model at microscale 
and does not require solving any boundary-value prob-
lems. Problems of the maximization of f3 and f4 are 
transformed to minimization problems by multiplying 
a fitness function value by −1.

5. Numerical example

As an example of multi-criteria optimization of the 
microstructure of a porous material, the elementary 
geometry in the form of a cuboid solid at the macro 
scale was developed, while the void at the micro scale 
inside the RVE is modelled as a rotating solid using 
parametric curves. Cuboid aluminium solid of dimen-
sions 100 mm × 20 mm × 20 mm is fixed on one side 
and subject to thermal and mechanical loads (Fig. 2). 
Uniform distributed load P is applied on the surface 
opposite of the fixed (displacement u0) side. The tem-
perature gradient for the model is realized by imposing 
on both these surfaces known temperatures T1 and T2. 
The boundary conditions and material properties of al-
uminium are presented in Table 1.

Fig. 2. Macromodel under thermal and mechanical loads

Table 1. Boundary conditions and material properties

Boundary condition  
or material property Symbol Value

Displacement u0 0

Load P 360 N

Temperature 1 T1 0°C

Temperature 2 T2 100°C

Young’s modulus E 70 GPa

Poisson’s ratio ν 0.35

Thermal conductivity K 200 W/(m⋅K)

Thermal expansion coefficient αt 23 ⋅ 10−6 K−1

Analyses in the microscale concern the RVE mod-
el based on the parametric model in which the geom-
etry of a microstructure is governed by a set of design 
variables, and are shown in Table 2 supplemented with 
limits imposed on them.

Table 2. Design variables

Symbol Design variable Lower 
limit

Upper 
limit

l length of revolve axis 0.1 0.8

x1 position of control point 1 0.01 0.3

x2 position of control point 2 0.01 0.45

x3 position of control point 3 0.01 0.45

x4 position of control point 4 0.01 0.45

x5 position of control point 5 0.01 0.3

α1 rotation angle 1 0° 90°

α2 rotation angle 2 0° 90°

The geometry of the RVE represents the geom-
etry of a single pore in a periodic microstructure. 
A parametric model is developed in a way to provide 
a high flexibility of shapes, which can be described 
by a limited number of design variables. The geom-
etry of the pore is assumed to be axisymmetric and 
is constructed by revolving a closed B-spline curve 
of order 4 around an axis. The shape of the curve is 
controlled by 5 design variables representing the po-
sition of control points (Fig. 3b), and the length of 
an axis is controlled by an additional design variable 
(Fig. 3a). After the pore volume is generated (Fig. 3c) 
it is furthermore rotated around two axes (Fig. 3d). 
The shape of a pore is eventually subtracted from the 
volume of a full unit block. After creating the geom-
etry of an RVE, it is discretized using tet4 elements 
(Fig. 3e).
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Fig. 3. Modelling of the RVE – design variables and discretization of the RVE:  
a)-d) the subsequent steps of creating the geometry of the void; e) discretized RVE

Results for this example were obtained after solving 
approximately 10,000 boundary value problems and con-
sist of a set of 100 Pareto-optimal (non-dominated) solu-
tions found during the course of optimization. Values of 
objective functions for the obtained solutions are shown 
in the figures in two ways. A 3D scatter plot with values 
of the f2 function represented by colour, and the remain-
ing fitness function as values on the axes is shown in Fig-
ure 4. Scatter plot matrix of obtained solutions is shown 
in Figure 5. Along the diagonal are histogram plots of 
objective function values. On the basis of the presented 
plots of non-dominated solution some conclusions on 
the relationships between objectives can by drawn. On 
the 4D (3D + colour) plot, the solutions are arranged ap-
proximately in line, which indicates the existence of a de-
generate real Pareto front in the problem. Looking at the 
scatter plot matrix, it can be noticed that this is caused by 
solutions displaying a similar nature pairwise. 

Fig. 4. Three-dimensional obtained Pareto-optimal solutions 
with f2 criterion in color scale

Pairs of solutions in this example are proportional 
(f1 – f3 and f2 – f4) or inversely proportional (all remain-

ing pairs). Examining the physical nature of the consid-
ered objectives, such a situation can be explained. For 
solutions in which the size of the pore was small, the 
thermal conductivity and stiffness were increased and 
therefore, values of optimization functionals f1 and f3 
improved, which, however stand in conflicting nature 
of objectives related to volume and equivalent stress in 
the model, expressed in functionals f2 and f4. In general, 
it might be possible to find solutions with a low value 
of both objectives which should come in an agreement. 
Such a scenario is possible due to areas of increased 
stress concentration existing in the micromodel – pore 
of low volume, even though, usually results in low 
stress level, might in the case of specific shapes, ex-
hibit locations of stress concentration. Nevertheless, 
such solutions are not interesting from the optimization 
point of view as they are dominated by other solutions 
in the solution space. 

Fig. 5. Scatter plot matrix of obtained solutions

Among the found solutions, some solutions were 
highlighted. Solutions displaying extreme values of objec-
tives f1 and f3 (E1), f2 and f4 (E2) as well as two compromise 
solutions (C1 and C2) are presented in detail. The geome-
try of these solutions is shown in Figure 6, and the values 
of objective functions and design variables are in Table 3.

a) b) c) d) e)
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Table 3. Values of fitness functions and design variables of selected solutions

Design E1 E2 C1 C2

f1 [mm] 0.152926 0.19227 0.162077 0.170551

f2 [MPa] 133.239 74.6041 110.688 99.7959

f3 [W/(m·K)] −196.962 −156.136 −186.349 −176.84

f4 [–] −0.0109179 −0.154978 −0.0559121 −0.0838825

l [µm] 0.2543 0.5926 0.2365 0.3875

x1 [µm] 0.093 0.3076 0.329 0.2941

x2 [µm] 0.165 0.3437 0.3301 0.343

x3 [µm] 0.1092 0.3335 0.3454 0.0925

x4 [µm] 0.1047 0.1397 0.1448 0.3018

x5 [µm] 0.1437 0.3241 0.1708 0.3064

α1 [°] 88.4619 42.3712 22.1711 1.8684

α2 [°] 48.3682 76.4589 89.3652 32.425

Fig. 6. Geometry of selected solutions

6. Final remarks

Multiobjective optimization of porous material in the 
multiscale was presented. Optimization of the geom-
etry of microstructure was solved for four different 
proposed functionals. More functionals related to the 
particular needs asked of a porous structure can be 
formulated. A set of 100 non-dominated solutions 
was found. Proposed methods of visualisation help 
to draw conclusions on the natures of the objectives. 
Among the found solutions, some designs related to 
the extreme value of optimization functions were 
highlighted, compared in terms of design variables 
and the geometry of these solutions was shown. Ana-
lysing the relationships between non-dominated solu-
tions and the shape of the Pareto front for the problem 
defined and solved in the paper, it appeared that the 
obtained set of solutions does not show more com-
plex relationships, such as non-convexity or discon-

tinuity of the front. In such a case, of course, the use 
of other less computationally expensive multi-crite-
ria optimization methods can be considered, while 
this is not known apriori. In general, with a change 
of assumptions, i.e. a different definition of design 
variables, constraints, the consideration of additional 
criteria, etc., the situation can be quite different. It can 
be concluded that the developed method shows great-
er universality in comparison to traditional methods 
and its application can improve the multiscale design 
of porous systems.
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