Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The development of the concept of Thermomechanical Controlled Processing (TMCP) in the wire rod rolling mill of CMC Poland has opened up new opportunities for the production of fasteners without the application of heat treatment. The crucial effect of TMCP in the case of wire rod rolling is its capability of shaping fine austenite grain size following the last pass, typically below 20–25 µm in the wire rod cross-section. This is a prerequisite for obtaining the required cold workability level for the cold forming of fasteners, even if hard constituents (bainite, martensite) are present in the wire rod structure. In this paper, the physical simulation and numerical modelling capabilities were described for the design of cooling conditions in the Stelmor process and cold heading operation. The investigated material was conventional 32CrB4 grade used for the fasteners production with the application of heat treatment.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
- CMC Poland, ul. Piłsudzkiego 82, 42-400 Zawiercie, Poland
autor
- CMC Poland, ul. Piłsudzkiego 82, 42-400 Zawiercie, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Łukasiewicz Research Network, Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network, Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network, Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
Bibliografia
- Andersson, J.O., Helander, T., Höglund, L., Shi, P.F. & Sundman, B. (2002). Thermo-Calc and DICTRA, computational tools for materials science. Calphad, 26(2), 273–312. https://doi.org/10.1016/S0364-5916(02)00037-8.
- Avrami, M. (1939). Kinetics of phase change. I. General theory. The Journal of Chemical Physics, 7, 1103–1112. https://doi.org/10.1063/1.1750380.
- Chenot, J.-L. & Bellet, M. (1992). The viscoplastic approach for the finite-element modelling of metal forming processes. In P. Hartley, I. Pillinger, C. Sturges (Eds.), Numerical modelling of material deformation processes. Research, Development and Applications (pp. 179–224). Springer London. https://doi.org/10.1007/978-1-4471-1745-2_8.
- Cockroft, M.G. & Latham, D.J. (1968). Ductility and the workability of metals. Journal of the Institute of Metals, 96, 33–39.
- Fisher, J.R. & Gurland, J. (1981). Void nucleation in spheroidized carbon steels. Metal Science, 15(5), 18.
- Hensel, A. & Spittel, T. (1979). Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. VEB Deutscher Verlag fur Grundstoffindustrie.
- Johnson, W.A. & Mehl, R.F. (1939). Reaction kinetics in processes of nucleation and growth. Transactions AIME, 135, 416–442.
- Koistinen, D.P. & Marburger, R.E. (1959). A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica, 7, 59–69. https://doi.org/10.1016/0001-6160(59)90170-1.
- Kolmogorov, A. (1937). K statisticheskoyteorii kristalliza-tsii metallov. Izvestiyaakademii Nauk SSSR, 1(3), 355–359 [К статистической теории кристаллиза-ции металлов. Известия Академии Наук СССР, 1(3), 355–359].
- Kuziak, R., Zajac, S., Kawalla, R., Waengler, S., Stercken, K., Jakobczak, R., Urlau, R. & Hasler, R. (2008). Cold Heading Quality Low-Carbon Ultra-High-Strength Bainitic Steels. Final Report. RFCS Project No. RFSR-CT-2005-00031.
- Pietrzyk, M. & Kuziak, R. (2012). Modelling phase transformations in steel. In J. Lin, D. Balint, M. Pietrzyk (Eds.), Microstructure Evolution in Metal Forming Processes (pp. 145–179). Woodhead Publishing.
- Piwowarczyk, M., Wolanska, N., Pietrzyk, M., Rauch, Ł, Kuziak, R. & Zalecki, W. (2022). Phase transformation model for adjusting the cooling conditions in Stelmor process to obtain the targeted structure of thermomechanically rolled wire rod used for fastener production. Metallurgical Research Technology, 119(5), 517. https://doi.org/10.1051/metal/2022071.
- Szala, J. Metilo (version 12.01a). Katowice Silesian University of Technology, Institute of Materials Science.
- Szeliga, D., Gawad, J. & Pietrzyk, M. (2006). Inverse analysis for identification of rheological and friction models in metal forming. Computer Methods in Applied Mechanics and Engineering, 195, 6778–6798. https://doi.org/10.1016/j.cma.2005.03.015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4b94de4-1f1b-46fa-8ceb-1ffe16ea35a5