PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Submesoscale processes in the surface layer of the central Baltic Sea: A high-resolution modelling study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A high-resolution model with a horizontal resolution of 250 m was used to analyze the surface eddy fields and the distribution of kinetic energy in the Baltic Sea. The results indicate a close relationship between the wind speed and the kinetic energy at the surface and the vertically averaged kinetic energy in the sea, and a lagged correlation between the kinetic energy at the surface and the eddy field. The spatial patterns of kinetic energy indicate more energetic currents in the western and southern parts of the Baltic Sea. The distribution of vorticity is inhomogeneous and differs significantly between sea areas. Submesoscale features are also inhomogeneously distributed and occur more frequently in the Gdańsk Basin, the Gulf of Finland, and the western part of the northern Baltic proper.
Czasopismo
Rocznik
Strony
78--90
Opis fizyczny
Bibliogr. 72 poz., rys., wykr.
Twórcy
autor
  • Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
  • Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
autor
  • Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
autor
  • Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
  • Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
autor
  • Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
autor
  • Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
Bibliografia
  • 1. Aitsam, A., Hansen, H.-P., Elken, J., Kahru, M., Laanemets, J., Pajuste, M., Pavelson, J., Talpsepp, L., 1984. Physical and chemical variability of the Baltic Sea: a joint experiment in the Gotland basin. Cont. Shelf Res. 3, 291-310.
  • 2. Barkan, R., Molemaker, M.J., Srinivasan, K., McWilliams, J.C., D’Asaro, E.A., 2019. The Role of Horizontal Divergence in Submesoscale Frontogenesis. J. Phys. Oceanogr. 49, 1593-1618. https://doi.org/10.1175/JPO- D- 18- 0162.1
  • 3. Brannigan, L., Marshall, D.P., Naveira Garabato, A.C., Nurser, A.J.G., Kaiser, J., 2017. Submesoscale Instabilities in Mesoscale Eddies. J. Phys. Oceanogr. 47, 3061-3085. https://doi.org/10.1175/JPO-D-16-0178.1
  • 4. Burchard, H., Bolding, K., 2001. Comparative Analysis of Four Second-Moment Turbulence Closure Models for the Oceanic Mixed Layer. J. Phys. Oceanogr. 31, 1943-1968. https://doi.org/10.1175/1520-0485(2001)031〈1943:CAOFSM〉2.0.CO;2
  • 5. Burchard, H., Bolding, K., 2002. GETM — a general estuarine transport model. Scientific Documentation, Technical report EUR 20253 en., Tech. Rep. European Commission, Ispra, Italy, https://op.europa.eu/en/publication-detail/-/publication/5506bf19-e076-4d4b-8648-dedd06efbb38/language-en/format-PDF/source-281672731 (last access: 3 March 2023).
  • 6. Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., 2001. Ocean turbulence, Part I: One-point closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31, 1413-1426. https://doi.org/10.1175/1520-0485(2001)031〈1413:OTPIOP〉2.0.CO;2
  • 7. Chrysagi, E., Umlauf, L., Holtermann, P., Klingbeil, K., Burchard, H., 2021. High-resolution simulations of submesoscale processes in the Baltic Sea: The role of storm events. J. Geophys. Res.-Oceans 126 (3), e2020JC016411.
  • 8. Cui, W., Wang, W., Zhang, J., Yang, J., 2019. Multicore structures and the splitting and merging of eddies in global oceans from satellite altimeter data. Ocean Sci. 15, 413-430. https://doi.org/10.5194/os-15-413-2019
  • 9. Eilola, K., Rosell, E.A., Dieterich, C., Fransner, F., Höglund, A., Meier, H.E.M., 2012. Modeling Nutrient Transports and Exchanges of Nutrients Between Shallow Regions and the Open Baltic Sea in Present and Future Climate. AMBIO 41, 586-599. https://doi.org/10.1007/s13280-012-0322-1
  • 10. Elken, J., Matthäus, W., 2008. Baltic Sea oceanography. In: Regional Climate Studies, Assessment of climate change for the Baltic Sea Basin. Annex A 1, 379-385.
  • 11. Elken, J., Pavelson, J., Talpsepp, L., 1987. Dynamics and water mass distribution at the southern Gotland Basin (polygon studies). In: Proc. 15th CBO, Copenhagen, 136-144.
  • 12. Fischer, H., Matthäus, W., 1996. The importance of the Drogden Sill in the Sound for major Baltic inflows. J. Marine Syst. 9 (3—4), 137-157.
  • 13. Gräwe, U., Holtermann, P., Klingbeil, K., Burchard, H., 2015. Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Model. 92, 56-68. https://doi.org/10.1016/j.ocemod.2015.05.008
  • 14. Gröger, M., Placke, M., Meier, H.E.M., Börgel, F., Brunnabend, S.-E., Dutheil, C., Gräwe, U., Hieronymus, M., Neumann, T., Radtke, H., Schimanke, S., Su, J., Väli, G., 2022. The Baltic Sea Model Intercomparison Project (BMIP) — a platform for model development, evaluation, and uncertainty assessment. Geosci. Model Dev. 15, 8613-8638. https://doi.org/10.5194/gmd-15-8613-2022
  • 15. Hofmeister, R., Burchard, H., Beckers, J.-M., 2010. Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Model. 33, 70-86. https://doi.org/10.1016/j.ocemod.2009.12.003
  • 16. Holtermann, P., Prien, R., Naumann, M., Umlauf, L., 2020. Interleaving of oxygenized intrusions into the Baltic Sea redoxcline. Limnol. Oceanogr. 65, 482-503.
  • 17. Hoskins, B.J., Bretherton, F.P., 1972. Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci. 29 (1), 11-37.
  • 18. Ito, D., Suga, T., Kouketsu, S., Oka, E., Kawai, Y., 2021. Spatiotemporal evolution of submesoscale filaments at the periphery of an anticyclonic mesoscale eddy north of the Kuroshio Extension. J. Oceanogr. 77, 763-780. https://doi.org/10.1007/S10872- 021- 00607- 4/FIGURES/14
  • 19. Jędrasik, J., Kowalewski, M., 2019. Mean annual and seasonal circulation patterns and long-term variability of currents in the Baltic Sea. J. Marine Syst. 193, 1-26.
  • 20. Kahru, M., Leppänen, J.-M., Nõmmann, S., Passow, U., Postel, L., Schulz, S., 1990. Spatio-temporal mosaic of the phytoplankton spring bloom in the open Baltic Sea in 1986. Mar. Ecol. Prog. Ser. 66, 301-309.
  • 21. Karimova, S.S., Lavrova, O.Y., Solov’ev, D.M., 2012. Observation of Eddy Structures in the Baltic Sea with the Use of Radiolocation and Radiometric Satellite Data. Izv. Atmos. Ocean. Phy. 48, 1006-1013. https://doi.org/10.1134/S0001433812090071
  • 22. Klingbeil, K., Lemarié, F., Debreu, L., Burchard, H., 2018. The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives. Ocean Model. 125, 80-105.
  • 23. Klingbeil, K., Mohammadi-Aragh, M., Gräwe, U., Burchard, H., 2014. Quantification of spurious dissipation and mixing — Discrete Variance Decay in a Finite-Volume framework. Ocean Model. 81, 49-64. https://doi.org/10.1016/j.ocemod.2014.06.001
  • 24. Kononen, K., Huttunen, M., Kanoshina, I., Laanemets, J., Moisander, P., Pavelson, J., 1999. Spatial and temporal variability of a dinoflagellate-cyanobacterium community under a complex hydrodynamical influence: a case study at the entrance to the Gulf of Finland. Mar. Ecol. Prog. Ser. 186, 43-57.
  • 25. Kowalewski, M., Ostrowski, M., 2005. Coastal up-and downwelling in the southern Baltic. Oceanologia 47 (4), 453-475.
  • 26. Krauss, W., Brügge, B., 1991. Wind-produced water exchange between the deep basins of the Baltic Sea. J. Phys. Oceanogr. 21, 373-384. https://doi.org/10.1175/1520-0485(1991)021〈0373:WPWEBT〉2.0.CO;2
  • 27. Laanemets, J., Pavelson, J., Lips, U., Kononen, K., 2005. Downwelling-related mesoscale motions at the entrance to the Gulf of Finland: observations and diagnosis. Oceanol. Hydrobiol. Stud. 34 (2), 15-36.
  • 28. Laanemets, J., Väli, G., Zhurbas, V., Elken, J., Lips, I., Lips, U., 2011. Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006.Boreal Environ. Res. 16, 15-26.
  • 29. Laanemets, J., Zhurbas, V., Elken, J., Vahtera, E., 2009. Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: Model experiments. Boreal Environ. Res. 14 (1), 213-225.
  • 30. Lass, H.U., Mohrholz, V., Nausch, G., Siegel, H., 2010. On phosphate pumping into the surface layer of the eastern Gotland Basin by upwelling. J. Marine Syst. 80 (1—2), 71-89.
  • 31. Lass, H.U., Prandke, H., Liljebladh, B., 2003. Dissipation in the Baltic proper during winter stratification. J. Geophys. Res. 108, 3187. https://doi.org/10.1029/2002JC001401
  • 32. Lehmann, A., Myrberg, K., Höflich, K., 2012. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990—2009. Oceanologia 54 (3), 369-393. https://doi.org/10.5697/OC.54-3.369
  • 33. Leppäranta, M., Myrberg, K., 2009. Circulation. In: Physical Oceanography of the Baltic Sea. Springer, Berlin, Heidelberg, 131-187.
  • 34. Liblik, T., Väli, G., Salm, K., Laanemets, J., Lilover, M.-J., Lips, U., 2022. Quasi-steady circulation regimes in the Baltic Sea. Ocean Sci. 18, 857-879. https://doi.org/10.5194/os-18-857-2022
  • 35. Lilover, M.J., Lips, U., Laanearu, J., Liljebladh, B., 1998. Flow regime in the Irbe Strait. Aquatic Sci. 60, 253-265.
  • 36. Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., Arheimer, B., 2010. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 41, 295-319. https://doi.org/10.2166/nh.2010.007
  • 37. Lips, I., Lips, U., Liblik, T., 2009. Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea). Cont. Shelf Res. 29, 1836-1847.
  • 38. Lips, U., Kikas, V., Liblik, T., Lips, I., 2016a. Multi-sensor in situ observations to resolve the sub-mesoscale features in the stratified Gulf of Finland. Baltic Sea. Ocean Sci. 12, 715-732. https://doi.org/10.5194/os-12-715-2016
  • 39. Lips, U., Lilover, M.J., Raudsepp, U., Talpsepp, L., 1995. Water renewal processes and related hydrographic structures in the Gulf of Riga. EMI Report Ser. 1, 1-34.
  • 40. Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016b. A numerical study of circulation in the Gulf of Riga, Baltic Sea, Part I: Whole-basin gyres and mean currents. Cont. Shelf Res. 112, 1-13. https://doi.org/10.1016/J.CSR.2015.11.008
  • 41. Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016c. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part II: Mesoscale features and freshwater transport pathways. Cont. Shelf Res. 115, 44-52.
  • 42. Lizuma, L., Avotniece, Z., Rupainis, S., Teilans, A., 2013. Assessment of the present and future offshore wind power potential: A case study in a target territory of the Baltic Sea near the Latvian coast. Sci. World J. 2013, 126428. https://doi.org/10.1155/2013/126428
  • 43. Matthäus, W., Franck, H., 1992. Characteristics of major Baltic in-flows — a statistical analysis. Cont. Shelf Res. 12, 1375-1400. McWilliams, J.C., 2016. Submesoscale currents in the ocean. P. Roy. Soc. A-Math. Phy. 472 (2189), 20160117.
  • 44. Meier, H.E.M., 2007. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci. 74, 610-627. https://doi.org/10.1016/j.ecss.2007.05.019
  • 45. Meier, H.E.M., Feistel, R., Piechura, J., Arneborg, L., Burchard, H., Fiekas, V., Golenko, N., Kuzmina, N., Mohrholz, V., Nohr, C., Paka, V.T., 2006. Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models. Oceanologia 48 (S), 133-164.
  • 46. Meier, H.E.M., Kauker, F., 2003. Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity. J. Geophys. Res. 108 (C11), 3368. https://doi.org/10.1029/2003JC001799
  • 47. Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., Gräwe, U., 2015. Fresh oxygen for the Baltic Sea - An exceptional saline inflow after a decade of stagnation. J. Marine Syst. 148, 152-166. https://doi.org/10.1016/j.jmarsys.2015.03.005
  • 48. Morvan, M., L’Hégaret, P., Carton, X., Gula, J., Vic, C., de Marez, C., Sokolovskiy, M., Koshel, K., 2019. The life cycle of submesoscale eddies generated by topographic interactions. Ocean Sci. 15, 1531-1543. https://doi.org/10.5194/os-15-1531-2019
  • 49. Nausch, M., Nausch, G., Lass, H.U., Mohrholz, V., Nagel, K., Siegel, H., Wasmund, N., 2009. Phosphorus input by upwelling in the eastern Gotland Basin (Baltic Sea) in summer and its effects on filamentous cyanobacteria. Estuar. Coast. Shelf Sci. 83, 434-442.
  • 50. Onken, R., Baschek, B., Angel-Benavides, I.M., 2019. Very high-resolution modelling of submesoscale turbulent patterns and processes in the Baltic Sea. Ocean Sci. Discuss (in review). https://doi.org/10.5194/os-2019-44
  • 51. Otsmann, M., Suursaar, Ü., Kullas, T., 2001. The oscillatory nature of the flows in the system of straits and small semienclosed basins of the Baltic Sea. Cont. Shelf Res. 21 (15), 577-1603. https://doi.org/10.1016/S0278-4343(01)00002-4
  • 52. Radtke, H., Brunnabend, S.-E., Gräwe, U., Meier, H.E.M., 2020. Investigating interdecadal salinity changes in the Baltic Sea in a 1850-2008 hindcast simulation. Clim. Past 16, 1617-1642. https://doi.org/10.5194/cp-16-1617-2020
  • 53. Salm, K., Liblik, T., Lips, U., 2023. Submesoscale variability in a mesoscalefront captured by a glider mission in the Gulf of Finland, Baltic Sea. Front. Mar. Sci. 10, 984246. https://doi.org/10.3389/fmars.2023.984246
  • 54. Shcherbina, A.Y., D’Asaro, E.A., Lee, C.M., Klymak, J.M., Molemaker, M.J., McWilliams, J.C., 2013. Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett. 40 (17), 4706-4711. https://doi.org/10.1002/grl.50919
  • 55. Simpson, J.H., Bowers, D.G., 1981. Models of stratification and frontal movements in shelf seas. Deep-Sea Res. 28, 727-738.
  • 56. Simpson, J.H., Brown, J., Matthews, J., Allen, G., 1990. Tidal straining, density currents and mixing in the control of estuarine stratification. Estuar. Coast. 13, 125-132.
  • 57. Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091〈099:GCEWTP〉2.3.CO;2
  • 58. Suhhova, I., Liblik, T., Lilover, M.-J., Lips, U., 2018. A descriptive analysis of the linkage between the vertical stratification and current oscillations in the Gulf of Finland. Boreal Environ. Res. 23, 83-103.
  • 59. Suursaar, Ü., Elken, J., Belkin, I.M., 2021. Fronts in the Baltic Sea: A Review with a Focus on Its North-Eastern Part. The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg https://doi.org/10.1007/698_2021_813
  • 60. Thomas, L., Tandon, A., Mahadevan, A., 2008. Submesoscale processes and dynamics. Am. Geophys. Union Geophys. Monogr. Ser. 177, 17-38. https://doi.org/10.1029/177GM04
  • 61. Tippenhauer, S., Janout, M., Chouksey, M., Torres-Valdes, S., Fong, A., Wulff, T., 2021. Substantial Sub-Surface Chlorophyll Patch Sustained by Vertical Nutrient Fluxes in Fram Strait Observed With an Autonomous Underwater Vehicle. Front. Mar. Sci. 8, 605225. https://doi.org/10.3389/fmars.2021.605225
  • 62. Väli, G., Meier, H.E.M., Placke, M., Dieterich, C., 2019. River runoff forcing for ocean modeling within the Baltic Sea Model Intercomparison Project. Meereswiss. Ber., Warnemünde 113, 1-25. https://doi.org/10.12754/msr-2019-0113
  • 63. Väli, G., Zhurbas, V., 2021. Seasonality of Submesoscale Coherent Vortices in the Northern Baltic Proper: A Model Study. Fundamentalnaya i Prikladnaya Gidrofizika 14 (3), 122-129. https://doi.org/10.7868/S2073667321030114
  • 64. Väli, G., Zhurbas, V., Laanemets, J., Elken, J., 2011. Simulation of nutrient transport from different depths during an upwelling event in the Gulf of Finland. Oceanologia 53 (1-TI), 431-448.
  • 65. Väli, G., Zhurbas, V., Lips, U., Laanemets, J., 2017. Submesoscale structures related to upwelling events in the Gulf of Finland, Baltic Sea (numerical experiments). J. Marine Syst. 171, 31-42. https://doi.org/10.1016/j.jmarsys.2016.06.010
  • 66. Väli, G., Zhurbas, V., Lips, U., Laanemets, J., 2018. Clustering of floating particles due to submesoscale dynamics: a simulation study for the Gulf of Finland. Baltic Sea 11, 21-35. https://doi.org/10.7868/s2073667318020028
  • 67. Vortmeyer-Kley, R., Holtermann, P.L., Feudel, U., Gräwe, U., 2019. Comparing Eulerian and Lagrangian eddy census for a tide-less, semi-enclosed basin, the Baltic Sea. Ocean Dynam. 69, 701-717. https://doi.org/10.1007/s10236-019-01269-z
  • 68. Zhurbas, V., Elken, J., Paka, V., Piechura, J., Väli, G., Chubarenko, I., Golenko, N., Shchuka, S., 2012. Structure of unsteady overflow in the Słupsk furrow of the Baltic Sea. J. Geophys. Res. 117, 4027. https://doi.org/10.1029/2011JC007284
  • 69. Zhurbas, V., Stipa, T., Mälkki, P., Paka, V., Golenko, N., Hense, I., Sklyarov, V., 2004. Generation of subsurface cyclonic eddies in the southeast Baltic Sea: Observations and numerical experiments. J. Geophys. Res. 109, C05033. https://doi.org/10.1029/2003JC002074
  • 70. Zhurbas, V., Väli, G., Kostianoy, A., Lavrova, O., 2019b. Hindcast of the mesoscale eddy field in the Southeastern Baltic Sea: Model output vs satellite imagery. Russian J. Earth Sci. 19, 1-17. https://doi.org/10.2205/2019ES000672
  • 71. Zhurbas, V., Väli, G., Kuzmina, N., 2019a. Rotation of floating particles in submesoscale cyclonic and anticyclonic eddies: a model study for the southeastern Baltic Sea. Ocean Sci. 15, 1691-1705. https://doi.org/10.5194/os- 15- 1691- 2019
  • 72. Zhurbas, V., Väli, G., Kuzmina, N., 2022. Striped texture of submesoscale fields in the northeastern Baltic Proper: Results of very high-resolution modelling for summer season. Oceanologia 64 (1), 1-21. https://doi.org/10.1016/J.OCEANO.2021.08.003
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4b1cafe-9496-4693-81c9-a300ec2efc7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.