PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stoker fired boiler plants are common throughout Eastern Europe. Increasingly strict emission standards will require application of secondary NOx  abatement systems on such boilers. Yet operation of such systems, in addition to reducing NOx  emissions, may also lead to emission of undesirable substances, for example N2O. This paper presents results of experimental tests concerning N2O formation in the selective non-catalytic NOx  emission reduction process (SNCR) in a stoker boiler (WR 25 type). Obtained results lead to an unambiguous conclusion that there is a dependency between the NOx  and N2O concentrations in the exhaust gas when SNCR process is carried out in a coal-fired stoker boiler. Fulfilling new emission standards in the analysed equipment will require 40–50% reduction of NOx  concentration. It should be expected that in such a case the N2O emission will be approximately 55–60 mg/m3, with the NOx  to N2O conversion factor of about 40%.
Rocznik
Strony
104--109
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Institute of Heat Engineering, 21/25 Nowowiejska Str., 00-665 Warszawa, Poland
Bibliografia
  • 1. Wrzesińska, B., Krzywda, R., Wąsowski, T., Krawczyk, P. & Badyda, K. (2015). Technologia selektywnej niekatalitycznej redukcji tlenków azotu pod kątem zastosowania jej w kotłach dla energetyki przemysłowej i ciepłownictwa (A selective non-catalytic reduction of nitrogen oxides technology for application in industrial and municipal heating boilers). Przem. Chem. 94(4) 608–613. DOI: 10.15199/62.2015.4.22 (in Polish).
  • 2. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control), OJ L 334/17.
  • 3. Regulation of the Minister of Environment of 4 November 2014 on emission standards for certain types of plants, fuel combustion sources.
  • 4. Badyda, K. & Lewandowski, J. (2009). Uwarunkowania wzrostu zapotrzebowania na gaz dla energetyki i ciepłownictwa [Determinants of growth in demand for gas for power and heat generation]. Rynek Energ. 5(84) (in Polish).
  • 5. Krawczyk, P. & Badyda, K. (2014). Numerical analysis of the impact of parameters of urea solution injection on reagent penetration inside the combustion chamber of a WR 25 boiler. Rynek Energ. 6, 115–139.
  • 6. Warych, J. (1994). Oczyszczanie przemysłowych gazów odlotowych [Treatment of industrial flue gases]. WNT, Warsaw, Poland (in Polish).
  • 7. Rota, R., Antos, D., Zanoelo, E.F. & Morbidelli, M. (2002). Experimental and modeling analysis of the NO x OUT process. Chem. Engine. Sci. 57(1), 27–38. http://dx.doi.org/10.1016/S0009-2509(01)00367-0
  • 8. Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques for Large Combustion Plants, European Commission, July 2006.
  • 9. EPA (2010). Methane and Nitrous Oxide Emissions from Natural Sources (PDF). U.S. Environmental Protection Agency, Washington, DC, USA.
  • 10. KOBIZE (2014). National Inventory Report 2014 – Greenhouse gas inventory in Poland for 1988–2012.
  • 11. Polish Ministry of Environment. (2003). Strategies for reduction of greenhouse gas emissions in Poland until 2020.
  • 12. Muzio, L.J., Quartucy G.C. & Cichanowiczy J.E. (2002). Overview and status of post-combustion NOx control: SNCR, SCR and hybrid technologies. Inter. J. Environ. Pollut. 17(1–2). DOI: 10.1504/IJEP.2002.000655.
  • 13. Jodal, M., Nielsen, C., Hulgaard, T. & Dam-Johansen, K. (1991). Pilot-scale experiments with NH3 and urea as reductants in selective non-catalytic reduction of nitric oxide. 23rd Symp. (Int.) on Combus. pp. 237–243. DOI: 10.1016/S0082-0784(06)80265-1.
  • 14. Gentemann, A.M.G. & Caton, J.A. (2001). Decomposition and Oxidation of a Urea-Water Solution as Used in Selective Non-Catalytic Removal (SNCR) Processes. 2nd Joint Meeting of the United States Sections: The Combustion Institute, 25–28 March 2001, Oakland, CA.
  • 15. M endoza-Covarrubias, C., Romero, C.E., Hernandez-Rosales, F. & Agarwal, H. (2011). N2O Formation in Selective Non-Catalytic NOx Reduction Processes. J. Environ. Protect. 2, 1095–1100. DOI: 10.4236/jep.2011.28126.
  • 16. Weijuan, Y., Junhu, Z., Zhijun, Z. & Kefa, C. (2007). Nitrous oxide formation and emission in selective non-catalytic reduction process. Front. Energ. Pow. Eng. China 1(2), 228–232. DOI: 10.1007/s11708-007-0031-9.
  • 17. Krawczyk, P., Badyda, K., Szczygieł, J. & Młynarz, S. (2015). Investigation of exhaust gas temperature distribution within a furnace of a stoker fired boiler as a function of its operating parameters. Arch. Thermodyn. 36(3), 3–14. DOI: 10.1515/aoter-2015-0018.
  • 18. Hernik, B. (2012). Numerical modeling of BP 1150 boiler by commercial numerical code. J. Pow. Technol. 92(1), 34–47.
  • 19. Winter, F., Wartha, C. & Hofbauer, H. (1999). NO and N2O formation during the combustion of wood, straw, malt waste and peat. Biores. Technol. 70, 39–49. http://dx.doi.org/10.1016/S0960-8524(99)00019-X
  • 20. Blejchař, T. & Dolníčková, D. (2013). Numerical Simulation of SNCR Technology with Simplified Chemical Kinetics Model. EPJ Web of Conferences 45, 01015 DOI: 10.1051/epjconf/2014534501015.
  • 21. Kramlich, J., Cole, J., McCarthy, J., Lanier, J. & McSorley, J. (1987). Mechanisms of N2O Formation in Flames. Fall Meeting, Paper 1A-006, Western States Section, The Combustion Institute.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4ac61e0-05aa-4dd9-b9d3-30e5ac90d157
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.