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Abstract
Image classification refers to an important process in computer vision. The purpose of this paper is to propose a novel approach 
named GGD-GMM and based on statistical modeling in the wavelet domain to describe textured images and rely on a number 
of principles that give its internal coherence and originality. Firstly, we propose a robust algorithm based on the combination 
of the wavelet transform and Scale Invariant Feature Transform. Secondly, we implement the aforementioned algorithm and 
fit the result using the finite mixture gamma distribution (GMM). The results, obtained for two benchmark datasets show that 
the proposed algorithm has a good relevance as it provides higher classification accuracy than some other well-known models 
(Kohavi, 1995). Moreover, it shows other advantages relied upon Noise-resistant and rotation invariant.
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1. Introduction

Statistical modeling provides a flexible and rich meth-
odological framework which allows to solve various 
imaging problems using a variety of that allows solv-
ing various imaging problems using various tools. The 
techniques of classification allow capturing morpholog-
ical properties, properties related to color, the texture of 
images, etc. For example, Sutton and Hall (1972) lead 
texture analysis of X-ray images by using the classi-
fication technique of pulmonary diseases. Chen et al. 
(1989) employ fractal texture analysis to classify ultra-
sound images of the liver. As for the diagnosis of bone 
diseases, particularly osteoporosis, some authors lead 
texture analysis on bone radiographs to discriminate 
between osteoporotic patients and controls.

Most of the earliest image processing analyses fo-
cus only on the magnitude of the wavelet describing the 
image (the real part of the complex representation). Nev-
ertheless, several recent studies analyze, in addition to the 
magnitude of the wavelet, the phase that contains more 
information about the features of the image. Oppenheim 
and Lim (1981) is considered as one of the earliest work 
that begins to include the phase in their analysis.

Various approaches are recently developed for im-
age processing analysis, particularly for analyzing the 
phase in the wavelet decomposition of the image, such 
as the generalized Gaussian density (GGD) (Oppenheim 
& Lim, 1981). The phase’s estimation and its fitting in-
volve the use of the standard circular distributions, where 
wrapped Cauchy (WC) and Vonn are considered the two 
most popular ones (see Mallat, 1999). Regarding the 
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wrapped Cauchy distribution, it is more accurate while it 
is not good for relative phase pdfs with Gaussian shapes 
(e.g., Moulin & Liu, 1999). In addition, the Vonn distri-
bution fits well with behaviors of relative phases from 
various real images, including texture images. 

Most current research is based on the assumption 
that certain invariant characteristics are common to 
an entire class of objects. Most classification methods 
characterize objects by their global appearance, usually 
of the entire image. These methods are not robust to 
occlusion or variations such as rotation or scale.

Moreover, these methods are only applicable to 
rigid objects. Local invariant features have become very 
popular to give a solution to the limitations of these meth-
ods in object detection, recognition, and classification.

Scale invariant feature transform is an algorithm 
that allows corner points automatically with subpixel res-
olution. When a  set of images seems to be similar, for 
example with regard to scale, orientation, etc. The sim-
ple corner detectors are found to be useful (see Vo et al., 
2011). However, the later techniques become less ef-
fective when the images look different regarding scales 
and/or orientation. In this situation, SIFT algorithm ap-
pears to more effective for the image processing anal-
ysis. In fact, this algorithm well locates the points of 
the image in the spatial and frequency domains, and 
preserves relative stability of the abstracted point’s fea-
tures concerning the visual angle, noise, affine transfor-
mation, and some other distinctive characteristics (see 
Manickam et al., 2019).

In this work, we demonstrate how SIFT algorithm 
provides better accuracy, what is fitted by a mixture gam-
ma distribution, at the image description level. We also 
show how this algorithm can describe the characteristics 
of a typical image through a small number of parameters. 
This allows to speed up the processing analysis of the 
studied image by the algorithm. Moreover, we examine the 
accuracy of the classification related to our approach and 
compare it to the accuracy of GGD-Vonn and GGD-WC 
(see Vo & Oriaintara, 2010; Vo et al., 2011).

The remainder of the paper is organized as follows. 
Section 2 presents Materials and Methods. Section 3 
discusses classification methods. Section 4 presents and 
discusses the experimental results. Finally, section 5 pro-
vides the conclusion and implications of our paper.

2. Materials and methods

2.1. Materials 

The steps feature extraction and classification were im-
plemented using the MATLAB® language. The experi-

ments were performed using a notebook (Acer E5-574-
592S) Intel Core i5-6200U, and 6 GB RAM.

We conduct the experiment on two sets of texture 
images, the Brodatz and VisTex databases, and we se-
lect 40 image textures from the VisTex databases used 
by e.g., Do & Vetterli, (2002a, 2002b) for our experi-
ments.

Brodatz is one of the most popular and all-pur-
pose datasets, which includes natural textures provides 
by Brodatz through photographs scanned after print. It 
established a texture catalog for the purpose of synthe-
sizing textured images (Brodatz, 1966). This catalog 
now constitutes a  benchmark test base for texture re-
searchers. These are 112 textures (sand, grass, bubbles, 
water, wood, etc.), each having sixteen different varia-
tions with a resolution of 640 × 640 pixel and in 8 bit 
(256 gray values). To expand the Brodatz database, each 
image was divided into sixteen 128 × 128 non-overlap-
ping sub-images, thereby forming 1248 texture samples. 
For each image in the database, the uniform discrete 
curvelet transform was applied with four scales and six 
orientations angles per scale (0°, 30°, 60°, 90°, 120° and 
150°). These images are conventionally used to validate 
the different methods of texture analysis (see Fig. 1).

The Vision Texture Database was produced by 
MIT University; it contains color texture images. Tex-
ture images representative of real-world conditions are 
the primary focus of VisTex. All of the images are in 
128 × 128 size and belong to one of 40 classes. Each 
class has just one sample. To provide enough samples 
for each class, each texture image should be divided 
into some non-overlap windows of the same size.

Fig. 1. Scheme of the proposed feature extraction approach 
(extracted characteristic)
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Figure 1 presents the methodological sequence 
employed in this study. This figure illustrates the steps 
of texture feature extraction used in the proposed algo-
rithm. The texture feature extraction was applied based 
on the application of wavelet and ranklet transforms, 
obtaining the vertical, horizontal, and diagonal sub-
bands. Next, these vectors were classified through the 
evaluation of different classifiers.

The GGD parameters of the real coefficients in 
each subband will be estimated as presented by Do 
and Vetterli (2002a). A  feature based on a  real part 
model using the GGD as well as an imaginary 
part using the (WC) for fitted the relative phase mod-
el is named GGD-WC. For GGD-Vonn, the image is 
analyzed using the same decomposition, except that 
the finest scale is fitted to the Vonn distribution. In 
this new approach, the standard vector is based on 
GGD, and the scale invariant feature transform is fit-
ted with gamma mixture distribution that we will call 
GGD-GMM. 

2.2. Methods

The basic theory of SIFT algorithm, calculation of 
points of interest and descriptors developed by Lowe 
in 2004, the implement feature transform is a  meth-
od to transform an image into a set of feature vectors 
that are invariant by usual geometrical transformations 
(rotation, homothety) (see Lowe, 2004). It is used for 
extracting a  distinctive invariant feature from images 
to serve reliable matching between different views of 
a scene or an object.

Two main steps are required to implement the 
Lowe method. Firstly, it is necessary to extract the 
characteristics of an object and to calculate its descrip-
tors. In other words, it detects the characteristics that 
are most likely to represent this object, to define and 
discriminate it by comparing it with others. Secondly, it 
is necessary to set up a matching procedure. This is the 
eventual goal of the method (see Fig. 2).

Fig. 2. Proposed scheme for feature extraction approach 
(see Lowe, 2004)

We will elaborate in the following main steps on how 
to transform an image into a set of descriptor vectors. 

Step 1: scale-space extrema detection
Using a  Gaussian difference function, we start with 
a search on all scales and image locations to identify 
the potential points of interest that are invariant to scale 
and orientation. In other words, we can obtain the can-
didate keypoints by locating the extrema from the Dif-
ference of Gaussian (DOG) pyramid.

Fig. 3. Construction of SIFT descriptor (see Lowe, 2004): 
a) image pyramid, b) extrema detection for DOG pyramid,

c) creation of keypoint descriptor

Step 2: Keypoint localization 
In the interest of obtaining stable keypoints, three pro-
cesses are applied in this step: By using the 3rd order 
Taylor polynomial, the first process is done to find 
the accurate location of keypoints. The second pro-
cess is focused on eliminating the keypoints with low 
contrast. In the last process, the keypoints which are 
in the edge will be eliminated by using the principal 
curvature.

Step 3: orientation assignment 
To each keypoint location, based on local image gra-
dient directions, one or more orientations are assigned 
(see Figs. 3 and 4).

Step 4: orientation assignment to points of interest
The calculation of the orientation histograms according 
to the neighborhood is used to justify the invariance of 
the descriptors with respect to the rotation.

Step 5: calculation of the descriptors 
The generation of the descriptor vectors associated 
with each point of interest requires the calculation of 
the keypoint descriptor at each point in the window, 
orientation and gradient magnitude. For each sub-re-
gion based on gradient magnitude, an orientation his-
togram that represents eight cardinal directions are 
calculated.   

a)

c)

b)
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a) 

b) 

c)

d) 

Fig. 4. Landscape image (a), landscape after zoom (b), 
the representation of dominant direction assignment (c), 

and correspondences linked with green lines (Matlab 
implementation of feature extraction and marked 

matching results) (d)

Four sub-images (bark, bubbles, wood and 
leather) from Brodatz database are presented in Fig-
ure 5.

a) 

b)

c) 

d) 

Fig. 5. Four sub-images: a) bark, b) bubbles, c) wood, 
d) leather with the size of 128 × 128 from the Brodatz 

database
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a) b) 

c) d) 

Fig. 6. SIFT descriptors histogram for the textured image: a) bark, b) bubbles, c) wood, d) leather extract from the Brodatz database

Figure 6 shows the histogram of SIFT, which 
offers four different images extract from the Brodatz 
database. As can be seen, this distribution has a partic-
ular shape, and can be interpreted through a statistical 
model.

2.3. Gamma model 

The gamma distribution is a  continuous distribution 
whose support is the set of strictly positive reals. With 
the classical parameterization, this distribution denoted 
f (α, β) admits for measurement:

f d x x
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where the gamma function is defined as Γ(α) and two 
positive parameters, α and β for shape and scale, re-
spectively.

Note that this law is sometimes parameterized 
not by the parameter but according to its inverse. In 
this paper, the classical parameterization will always 

correspond to the parameterization by the pair (α, β) 
introduced in equation (1). When the parameter β is 
a parametric set, the families are a natural exponential 
family.

2.4. Mixture gamma distribution

In this section, a  probabilistic formalization is pro-
posed to resolve the problem based on a special case of 
a mixed model.

Let χ = {xj}, j = 1, …, N be a set of samples, the 
density function for the finite mixture gamma distribu-
tions takes the following form:
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where: x > 0, αi > 0, βi > 0, i = 1, 2, …, k.
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Here, k denotes the number of components in the 
mixture. π1, π2, …, πk are the proportions that satisfy 
the conditions 0 < πi < 1, ∑k

i = 1 πi = 1,∀i = 1, 2, …, k. 
αi denote the shape of the i-th component of the 
mixture distribution and βi their scale parame-
ters. Where Γ(αi) is the gamma function defined as  
Γ(α) = ∫0

∞
x α – 1  exp(–x)dx, for x > 0.

The EM (Expectation-Maximization) algorithm 
will allow us to find the parameters of this mixture 
gamma distribution, starting from random values and 
adjusting them progressively until the likelihood of this 
model is maximum.

2.5. EM algorithm

The choice of standard algorithms comes from the 
fact that we are looking for performance and relevant 
algorithms, thus the most popular, which helps us to 
estimate the parameters of proposed models. Expecta-
tion-Maximization algorithm is a  general method for 
finding the estimated maximum likelihood of a given 
set of parameters of a distribution from a sample. Using 
the general representation of log-likelihood function 
given in McLachlan and Peel, the finite mixture gamma 
model is given as follows:

L X f xn i t i i
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Where X = {x1, x2, …, xt} denotes the set of N ob-
servation vectors available to estimate the parameters 
of the model and θ regroups the parameters that be es-
timated. The quantities π1, …, πm are called the mixing 
proportions or weights. The f(xt, αi, λi) is the density 
component of the mixture. It is assumed that the num-
ber of components M is known so that only the vector 
θ = (π1, …, πm, (α1, λ1), …, (αn, λn)) must be estimated.
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The space parameter is denoted by Θ, i.e.:

Θ = {(θ1, θ2, …, θn)} : θi = (πi, αi, λi), 1 ≤ i ≤ M}

The EM algorithm is used to estimate the gamma 
mixture parameters in the following manner.

Let st, t ≥ 1 be a sequence of i.i.d. random vari-
ables with distribution P(st = i) = πi. We can associate 
(x1,  x2,  …, xn) with (s1, s2, …, sn) as follows: assum-
ing st = i, xt has a gamma distribution with parameters 
(αi, λi). We call (x1, r1, x2, …, xn, sn) the augmented data, 
its likelihood is given by: 
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c
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Instead of finding the optimal likelihood estima-
tion, the EM algorithm optimizes the conditional loga-
rithmic likelihood:

max ( , , ) : [log (log ( ; , ) | , )( ) ( )
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That is:

θ(k + 1) = argmaxθ Q(X, θ, θ(k)) (8)

The computation gives:
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Next, we proceed to update α. Note that:
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Since � � �Q X k
i( , , ) /( )� � � 0  has no closed-form

expression, we do not have the optimal updating 
scheme for α aviable. So, we can update αi in its gradi-
ent direction:

αi
(k + 1) = αi

(k) + αkGαi
 (X, θ(k)) (14)

where is a step size that will be specified later and:
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where xt has a gamma distribution with parameters (αi, λi), 
αi is the shape of the i-th component of the mixture dis-
tribution, with λ is the rate parameter.

2.6. Uniform discrete curvelet transform

The complex wavelet transform has main advantages 
compared with the discrete wavelet transform (DWT), 
like good directional selectivity and the shift invariant 
property (e.g., Meeker et al., 1998; Selesnick et al., 
2005).

The transform is named the uniform discrete 
curvelet transform (UDCT) (see Nguyen & Orain-
tara, 2008), this is due to the positioning on a uniform 
lattice at each resolution the centers of the curvelet 
functions. At each resolution, the UDCT basis func-
tions are located on a uniform integer grid. In gener-
al, the UDCT can have 3 × 2n directional subbands, 
where n ≥ 0. Compared with the existing transforms, 
the new discrete transform has several advantages, 
such as ease implementation, hierarchical data struc-
ture, and lower redundancy ratio. For more informa-
tion on the detailed construction of the UDCT, the 
reader is referred to (Candès et al., 2006; Nguyen & 
Chauris, 2008).

 2.7. Wrapped Cauchy distribution

The wrapped Cauchy is a unimodal and symmetric 
distribution obtained from a  wrapping of the Cau-
chy distribution with density around the unit circle. 
The distribution (WC) closely resembles a von Mis-
es distribution for many values of ρ (see Mardia & 
Jupp, 2009; Jammalamadaka & SenGupta, 2001), 
and it has the probability density function defined 
by:

p( )
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1 2

2

2
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where ρ = e–σ, σ is the scale parameter, –π ≤ μ ≤ π is the 
location parameter and 0 ≤ ρ < 1 is the scale parameter. 

When, ρ → 0, the wrapped Cauchy distribution 
tends towards the uniform distribution.

2.8. Vonn distribution

Vonn distribution of relative phases at a  spatial loca-
tion (i, j) is defined as the difference between the phase 
of two adjacent complex wavelet coefficients (see Vo 
& Oraintara, 2010):

θ(i, j) = Lz(i, j) – Lz(i, j + 1)� (18)

where z(i,j) is the coefficient at position (i, j).
It is noted that to treat the circularity of the phases 

for complex coefficient z, Lz it is necessary to returns 
the angle of phase in radians. The angles lie between ±π.

The Vonn density distribution of relative phase θ 
is defined by:
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where c = λcos(θ – μ + π), –π ≤ θ, μ ≤ π, and 0 ≤ λ ≤ 1.
The Vonn distribution is unimodal and symmet-

rical about θ = μ (is the mean direction and λ is the 
correlation parameter). The Vonn distribution parame-
ters can be estimated by using the maximum-likelihood 
estimator (ML).

Let θ1, θ2, …, θn be a set of observations from a Vonn 
distribution and (μ, λ) are the two parameters, with θ1, 
θ2, …, θn are i.i.d. This likelihood function is given by:

L pn i
i

n
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where μ and λ are parameters to be estimated as follows:
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Differentiating log (L) and equating to zero, we 
obtain the likelihood equations:
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These equations can be solved numerically to find 
the parameters μ and λ. Nevertheless, μ can also be es-
timated by the mean direction:

1

1
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To oversimplify the estimation problem, we pro-
pound to estimate μ mean using direction and the New-
ton Raphson iterative method to find a solution of the 
equation g(λ) = 0 with μ = μ̂.

The Newton iteration can be stated as:
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We derive g(λ) and �g ( )�  (see Vo et al., 2011). 
They are given by:
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We propose using the correlation coefficient as 
a good initial value for the root of g(λ) as follows:
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where the covariance of complex wavelet coefficients 
in a subband is:
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where Ѱ11 is the covariance.

With the initial value as in (7), our ML estimator 
converges with a few iterations.

3. Statistical classifiers

3.1. Support vector machines 

In this section, we present the method of support vec-
tor machines (SVM), developed by Vapnik (1998). It is 
a method of classification by supervised learning that 
seeks to find the optimal function called hyperplane at 
the maximum margin, which allows optimal separation 
between data belonging to two different classes (Vap-
nik, 1998; Zhang et al., 2004).

Fig. 7. The separator hyperplane for two-dimensional data 
(see Huang et al., 2002)

Let X = V × Y be the space of labeled instances and 
D = {x1, x2, …, xn} be a dataset consisting of n labeled 
instances, where xi = 〈vi ∈ V, yi ∈ Y〉.

The accuracy of a  classier C is the probability 
of correctly classifying a randomly selected instance, 
i.e., acc = Pr(C(v) = y) for a  randomly selected in-
stance 〈v, y〉 ∈ χ, where the probability distribution over
the instance space is the same as the distribution that was
used to select instances for the inducer’s training set.

Once we obtain the support vectors, we try to clas-
sify the training samples and also test samples where 
we know the class labels. From the know class labels, 
we can compute the true positive, false positive, and 
false negatives. That will give the accuracy of the clas-
sification from the obtained Support vectors.

3.2. k-nearest neighbors (KNN)

The KNN algorithm is one of the simplest machine 
learning algorithms. In the context of classifying a new 
observation x, the simple founding idea is to have the 
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closest neighbors of this observation vote. The class of 
x is determined based on the majority class among the 
k-nearest neighbors of observation x.

The KNN method is therefore a  neighborhood-
based, non-parametric method by this means that the al-
gorithm makes it possible to make a classification with-
out making an assumption on the function y = f(x1, x2, …, 
xp), which relates the dependent variable to the indepen-
dent variables. The flexibility and efficiency of this meth-
od have motivated several authors to introduce this  ap-
proach into functional statistics. Among the pioneering 
works in this theme, we cite Burba et al. (2009), Karaa et 
al. (2017),  Kudraszow and Vieu (2013), and Lian (2011) 

k kr
r

c

�
�
�

1
(30)

Thus a new observation is predicted in class l with:

l = maxr(kr) (31)

This prevents the predicted class from being de-
termined only from a single observation. The degree of 
locality of this technique is determined by the param-
eter k: for k = 1, we use the method of the only nearest 
neighbor as maximum local technique, for l = k/n we 
use the majority class on the integral set of observations 
(this implying a constant prediction for each new ob-
servation to be classified) (see Deng et al., 2016).

3.3. Cross validation

To minimize the influence of the choice of partitioning 
of all the examples, cross-validation subdivides the ini-
tial training set into k disjoint subsets, D1, D2, D3, …, Dk  
of the same size. The training and the test are done k 
times. At iteration i, the subset Di is reserved for the 
test, and the rest of the examples are used to train the 
model. The final model accuracy is equal to the average 
of the k test accuracies.

The Leave-One-Out method (see Hamel, 2011) is 
a special case of cross-validation where k = N. At each 
iteration, the model is trained on N ‒ 1 examples and 
tested on the example excluded from the training. In 
the end, N precisions are obtained, the precision of the 
model is equal to their average.

3.4. Convolutional neural networks 

Convolutional neural networks are directly inspired by the 
visual cortex of vertebrates. A convolutional neural net-
work also called ConvNet (for “Convolutional Network”).

CNN can be divided into two parts. The first part, 
which we call the convolutional part of the model, and 
the second part, which we will call the classification 
part of the model, which corresponds to an MLP (Multi 
Layers Perceptron) model. It is a multi-layered neural 
network, and more precisely, it is a deep network com-
posed of multiple layers which are generally organized 
in blocks (CONV → RELU → POOL).There are four 
types of layers for a convolutional neural network: the 
convolutional layer, the pooling layer, the ReLU cor-
rection layer, and the fully-connected layer.

To create such compact representations, deep net-
works typically adjust several hundred thousand arti-
ficial synapses to achieve their learning goal, a  train-
ing process dominated by trial and error in the design 
phase and many hours, even days of actual training (see 
Khoshnood et al., 2017).

3.5. ROC curve and AUC

The ROC curve (receiver operating characteristic) was 
initially developed in the 1950s for military purposes 
(use of Radar data). Its interest in the medical field was 
underlined in 1960 by Lee Lusted (1960). Since then, 
this statistical tool has been used in particular in the 
pharmaceutical field (e.g., Lusted, 1970; Au, 2004), in 
radiology (Landais et al., 1994), and in biology. The 
ROC curve is a graphic representation of the relation-
ship between the sensitivity and the specificity of a test, 
calculated for all possible threshold values. The closer 
the ROC curve is to the upper left corner of the graph, 
the more efficient is the test since the true positive rate 
approaches 1 (Se = 1), and the false positive rate tends 
towards 0 (Sp = 1). The upper left point which is fur-
thest from the bisecting diagonal and usually corre-
sponds to the best threshold value (Tipples, 2002). 

The area under the ROC curve (AUC) is one of the 
most widely used overall test performance measures. It 
varies between 0.5 in the case of a non-informative test 
to 1 in the case of perfect performance. So, an AUC of 
0.50 means the test is bad. The higher the area under 
the curve, the better is the test. When several tests are 
studied simultaneously, their areas under the curve can 
also be used to compare their performance (DeLong 
et  al., 1988). However, these comparisons are made 
tricky when the ROC curves intersect. Local compar-
isons of the sensitivity and specificity of the different 
tests make it possible to refine the comparative study 
(Delacour et al., 2005). Other indices, such as likeli-
hood ratios (positive or negative) or expected infor-
mation capacity (CIA), are also used in addition to the 
overall measurement. 
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4. Experimental results and discussion

The experimental process began with testing how 
well the mixture gamma model fit phase features de-
rived from the SIFT transform. The dataset available 
through the Brodatz and VisTex Databases was used 
for the evaluation of the accuracy and precision of the 
proposed approach. We compare the proposed meth-
od with GGD-Vonn and GGD-WC features using the 
UDCT curvelet transform.

Fig. 8. Wood (128 × 128), mixture gamma distributions 
fitted the histogram (using 256 bins) (π1, π2) = (0.87, 0.13), 

(α1, β1) = (0.58, 0.04), (α2, β2) = (11.87, 0.02)

Fig. 9. Leather (128 × 128), mixture gamma distributions 
fitted the histogram (using 256 bins) (π1, π2) = (0.94, 0.06), 

(α1, β1) = (0.47, 0.07), (α2, β2) = (61.62, 0.004)

Figures 8 and 9 show the histograms of scale in-
variant feature transform descriptors for two different 
images. The tested images are wood and lather. Clearly, 
the proposed mixture gamma model fits the data well. 
In addition, the estimated parameters are different for 
both images. This suggests the use of these parameters 
for discriminating the different database images.

Fig. 10. KNN classification results, according to the values of k 
(number of nearest neighbors), using the proposed GGD-GMM

Fig. 11. ROC curves obtained using the different transforms 
for the classification

The Figure10 shows that the best classification 
accuracy for the k-nearest neighbors classification al-
gorithm is obtained forthe value k = 4.

We compare our approach with three well-known 
classifiers, i.e., KNN, Neural networks, and SVM. One 
can see from Table 1 that the proposed approach GGD-

Table 1. Classification accuracy achieved with state of art feature and ours

Rate of 
 accurately Neural networks

SVM KNN
SVM-CrossVal KNN-KFold

Database Brodatz VisTex Brodatz VisTex Brodatz VisTex
GGD-WC 90.54 88.82 88.07 85.64 87.12 85.03
GGD-Vonn 91.89 92.79 91.15 85.82 89.85 86.19
GGD-GMM 90.99 94.59 96.03 93.16 95.83 92.47
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GMM outperforms the state-of-the-art methods in both 
databases, Brodatz and VisTex. Besides, in the experi-
ments, the proposed features GGD-GMM increase sig-
nificantly the overall accuracy rate up to 96.03%. On 
the other hand, GGD-WC and GGD-Vonn achieve an 
accuracy rate of 88.07% and 91.15% for the SVM clas-
sification algorithm, respectively. 

In terms of AUC rate, according to the ROC curves 
shown in Figure 11, the proposed approach achieves the 
highest rate of AUC using the SVM classifier, which is 
consistent with the results presented in Table 1.

5. Conclusion and implications

In this study, we introduced a SIFT algorithm fit-
ted by the GMM (GGD-GMM) to describe the char-
acteristics of texture images by only a small number 
of parameters. This allows to speed up the processing 

image analysis. By using Brodatz and VisTex dataset, 
the experiments showed that our algorithm provides 
more accurate classification results than GGD-Vonn 
and GGD-WC methods. We, above all, sought to set 
up a generic approach so as not to be dependent on the 
content of the image. This system is based on local 
extraction and rich characterization of image infor-
mation and a classification approach by the statistical 
classifiers.
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