Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research paper aims to study the influence of some of the main parameters applied to the electrodeposition process on the nanocomposite layers obtained by strengthening the cobalt matrix with cerium oxide nanoparticles. Thus, the current efficiency (process efficiency) and the degree of inclusion of cerium oxide nanoparticles into cobalt matrix are analyzed according to the current density, the concentration of nanoparticles dispersed in the deposition electrolyte and time of the process. The choice of the optimal parameters imposed on the electrodeposition process lead to the improvement of the quality of the obtained layers, to the reduction of production costs and last but not least to the improvement of corrosion and tribocorrosion resistance of the material. The obtained results show an increase of current efficiency in the process of the deposited layers with the increase of time and current density applied. There is also a slight increasing in the current efficiency of the obtained layers with the increase of the concentration of nanoparticles dispersed in the deposition electrolyte. The increase of the current density, time and the concentration of nanoparticles also have an effect on the degree of embedded CeO2 nanoparticles into cobalt matrix for the studied nanocomposite layers. The degree of inclusion of nanoparticles decreases for the same studied system with the increasing of the current density.
Wydawca
Czasopismo
Rocznik
Tom
Strony
615--622
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab., wykr.
Twórcy
- Dunarea de Jos University of Galati, Faculty of Engineering, Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
autor
- Dunarea de Jos University of Galati, Faculty of Engineering, Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems (CC-ITES), 47 Domneasca Street, RO-800008 Galati, Romania
Bibliografia
- [1] Y.D. Gamburg, G. Zangari, G. Theory and Practice of Metal Electrodeposition, (2011). DOI: https://doi.org/10.1007/978-1-4419-9669-5
- [2] F. Nasirpouri, Electrodeposition of Nanostructured Materials, Springer Series in Surface Sciences, (2017). DOI: https://doi.org/10.1007/978-3-319-44920-3
- [3] L. Benea, Metode avansate de investigare a materialelor, Galaţi: Academica, (2017). ISBN 978-606-606-003-5
- [4] N. Malatji, P.A.I. Popoola, Tribological and Corrosion Performance of Electrodeposited Nickel Composite Coatings, Electrodeposition of Composite Materials, (2015). DOI: http://dx.doi.org/10.5772/62170
- [5] F.C. Walsh, C. Ponce de Leon, Transactions of the IMF. 92 (2), 83-98 (2014).
- [6] E.S. Güler, Effects of Electroplating Characteristics on The Coating Properties, Electrodeposition of Composite Materials, (2016).
- [7] L. Benea, E. Mardare-Danaila, M. Mardare, J.P. Celis, Corros. Sci. 80, 331-338 (2014).
- [8] L. Benea, E. Mardare-Danaila, J.P. Celis, Tribol. Int. 78, 168-175 (2014).
- [9] Y. Yang, Int. J. Electrochem. Sci. 12, 5304-5319 (2017).
- [10] L. Benea, E. Dănăilă, Key Eng. Mater. 699, 57-62 (2016).
- [11] L. Benea, M. Mardare-Pralea, Dig. J. Nanomater. Biostructures. 6 (3), 1025-1034 (2011).
- [12] B. Chen, J. Chen, L. Yang, G. Zhao, G. Ding, Surf. Eng. 30 (10), 763-767 (2014).
- [13] W.C. Lin, C.C. Chuang, P.T. Wang, C.M. Tang, Materials 12 (1), 116 (2019).
- [14] L. Benea, P. Ponthiaux, F. Wenger, Surf. Coat. Technol. 205 (23-24), 5379-5386 (2011).
- [15] N. Simionescu, L. Benea, J.P. Celis, IOP Conf. Ser. Mater. Sci. Eng. 572, 012003 (2019).
- [16] N. Simionescu, L. Benea, J.P. Celis, J. Mech. Behav. Biomed. Mater. 101, 103443 (2020).
- [17] F.S. Sorcaru, PhD thesis, Suprafete functionale Co/nano-ZrO2 obtinute prin electrodepunere pentru utilizarea in industrie şi biomedicina, Dunarea de Jos University, Galati (2012).
- [18] I.A. Pavlov, PhD thesis, Influenta tratamentelor electrochimice a suprafetelor (straturi nanocompozite in matrice de nichel) asupra rezistentei la coroziune şi uzura, Dunarea de Jos University, Galati (2012).
- [19] L. Benea, J.P. Celis, Materials 9 (4), 269 (2016).
- [20] O.E. Kongstein, G.M. Haarberg, J. Thonstad, J. Appl. Electrochem. 37 (6), 669-674 (2007)
- [21] S. Kuo, J. Chin. Inst. Eng. 27 (2), 243-251 (2004).
- [22] E. Beltowska-Lehman, P. Indyka, A. Bigos, M.J. Szczerba, J. Guspiel, H. Koscielny, M. Kot, Mater. Chem. Phys. 173, 524-533 (2016).
- [23] X. Xia, I. Zhitomirsky, J.R. McDermid, J. Mater. Process. Technol. 209 (5), 2632-2640 (2009).
- [24] H.Y. Zheng, M.Z. An, J. Alloys Compd. 459 (1-2), 548-552 (2008).
Uwagi
1. The authors would like to express appreciation for prof. Jean-Pierre Celis from Katholieke University of Leuven, Belgium and prof. Pierre Ponthiaux from Ecole Centrale Paris, France for they valuable scientific advice. Also to CC-ITES (http://www.cc-ites.ugal.ro/) for electrochemical experiments.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4a00f16-d4a6-4307-9622-c9bb6c6be5e5