PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real-Time Threat Mitigation in Financial IT Infrastructures Using Quantum Computing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Financial institutions continue to face evolving cyber security threats that require immediate detection and mitigation to prevent significant damage. Classical-based cyber security mechanisms struggle to keep up with these emerging threats due to their limitations in processing power and scalability, especially when dealing with distributed attacks. Quantum computing promises an unmatched level of scalable parallel processing with increased accuracy, speed, and timely response to real-time threats. This research evaluates the application of quantum computing algorithms, specifically Continuous-Variable Quan-tum Neural Networks (CV-QNN), Crystals-Kyber cryptographic methods, and Quantum-enhanced Monte Carlo simulations, within financial IT infrastructures. Our findings indicate that quantum algorithms substantially enhance threat detection accuracy, reduce response latency, and ensure secure communication against quantum-powered threats. However, practical implementation of quantum computing solutions faces challenges such as high error rates, environmental sensitivity, and integration complexities. Addressing these issues requires further technological advancement and strategic planning. This research contributes actionable insights for financial institutions, guiding the strategic adoption of quantum technologies to strengthen cyber security resilience.
Bibliografia
  • [1] I. L. Markov, “Limits on fundamental limits to computation,” Nature, vol. 512, pp. 147-154, 08 2014.
  • [2] “Quantum computing vs classical computing — berkeley nucleonics corporation,” Berkeleynucleonics.com, 08 2024. [Online]. Available: https://www.berkeleynucleonics.com/august-23-2024-quantum-computing-vs-classical-computing
  • [3] “The end of classical computing limits - articles - news & insights - peel hunt,” Peel Hunt, 2024. [Online]. Available: https://www.peelhunt.com/news-insights/articles/the-end-of-classical-computing-limits/
  • [4] M. Rouse, “What is quantum advantage? - definition from techopedia,” Techopedia, 10 2019. [Online]. Available: https://www.techopedia.com/definition/34023/quantum-advantage
  • [5] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen, T.-H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H.-L. Huang, Y.-H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, Q. Zhu, C.-Y. Lu, C.-Z. Peng, X. Zhu, and J.-W. Pan, “Strong quantum computational advantage using a superconducting quantum processor,” Physical Review Letters, vol. 127, 10 2021.
  • [6] S. Corli, L. Moro, D. Dragoni, M. Dispenza, and E. Prati, “Quantum machine learning algorithms for anomaly detection: a survey,” arXiv (Cornell University), 08 2024.
  • [7] O. Pfister, “Continuous-variable quantum computing in the quantum optical frequency comb,” Journal of Physics B, vol. 53, pp. 012 001-012 001, 11 2019.
  • [8] P. Geenens, “2025 global threat analysis report analysis of the global network and application attack trends of 2024,” 02 2025. [Online]. Available: https://www.radware.com/getattachment/59aeeea8-21b3-4606-9f76-f4bfda903f64/Radware Full Year Threat Report 2025 RWI-426.pdf.aspx
  • [9] E. U. A. for Cybersecurity, I. Lella, M. Theocharidou, E. Magonara, A. Malatras, R. Svetozarov Naydenov, C. Ciobanu, and G. Chatzichris-tos, “Enisa threat landscape 2024 - july 2023 to june 2024,” European Union Agency for Cybersecurity, Tech. Rep., 2024.
  • [10] A.-P. W. G. (APWG), “Phishing activity trends report,” 03 2025. [Online]. Available: https://docs.apwg.org/reports/apwg trends report q4 2024.pdf
  • [11] G. Alagic, M. Bros, P. Ciadoux, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, H. Silberg, D. Smith-Tone, and N. Waller, “Status report on the fourth round of the nist post-quantum cryptography standardization process,” NIST Internal Report (IR), vol. NIST IR 8545, 03 2025. [Online]. Available: https://csrc.nist.gov/pubs/ir/8545/final
  • [12] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd, “Continuous-variable quantum neural networks,” Physical Review Research, vol. 1, 10 2019.
  • [13] C. Wang, Y. Sun, S. Lv, C. Wang, H. Liu, and B. Wang, “Intrusion detection system based on one-class support vector machine and gaussian mixture model,” Electronics, vol. 12, no. 4, p. 930, 03 2023.
  • [14] K. Rochford, “Request for comments on post-quantum cryptography requirements and evaluation criteria,” Federal Register, 06 2016. [Online]. Available: https://www.federalregister.gov/documents/2016/08/02/2016-18150/request-for-comments-on-post-quantum-cryptography-requirements-and-evaluation-criteria
  • [15] D. Moody, G. Alagic, D. C. Apon, D. A. Cooper, Q. H. Dang, J. M. Kelsey, Y.-K. Liu, C. A. Miller, R. C. Peralta, R. A. Perlner, A. Y. Robinson, D. C. Smith-Tone, and J. Alperin-Sheriff, “Status report on the second round of the nist post-quantum cryptography standardization process,” NIST Internal Report (IR), vol. NIST IR 8309, pp. 9-10, 07 2020. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
  • [16] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber algorithm specifications and supporting documentation,” 08 2021. [Online]. Available: https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
  • [17] S. Müller, “Crystals kyber integration into tls,” 07 2023. [Online]. Available: https://leancrypto.org/papers/TLS and Kyber analysis.pdf
  • [18] “What is monte carlo simulation? - monte carlo simulation on amazon web services,” Amazon Web Services, Inc. [Online]. Available: https://aws.amazon.com/what-is/monte-carlo-simulation/
  • [19] V. Flovik, “A gentle introduction to monte carlo methods - tds archive - medium,” Medium, 01 2022. [Online]. Available: https://medium.com/data-science/a-gentle-introduction-to-monte-carlo-methods-98451674018d
  • [20] T. Matsakos and S. Nield, “Quantum monte carlo simulations for financial risk analytics: scenario generation for equity, rate, and credit risk factors,” Quantum, vol. 8, pp. 1306-1306, 04 2024.
  • [21] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and estimation,” arXiv:quant-ph/0005055, vol. 305, p. 53-74, 2002. [Online]. Available: https://arxiv.org/abs/quant-ph/0005055
  • [22] W. Monroe, “Bernoulli and binomial random variables,” 07 2017. [Online]. Available: https://web.stanford.edu/class/archive/cs/cs109/cs109.1178/lectureHandouts/070-bernoulli-binomial.pdf
  • [23] Q. F. D. Team, “Quantum amplitude estimation - qiskit finance 0.4.1,”Github.io, 2019. [Online]. Available: https://qiskit-community.github.io/qiskit-finance/tutorials/00 amplitude estimation.html
  • [24] I. Quantum, “Bqp — quantiki,” Quantiki.org, 2015. [Online]. Available: https://www.quantiki.org/wiki/bqp
  • [25] R. Acharya, D. A. Abanin, L. Aghababaie-Beni, I. Aleiner, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, N. Astrakhantsev, J. Atalaya, R. Babbush, D. Bacon, B. Ballard, J. C. Bardin, J. Bausch, A. Bengtsson, A. Bilmes, S. Blackwell, S. Boixo, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, D. A. Browne, B. Buchea, B. B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, A. Cabrera, J. Campero, H.-S. Chang, Y. Chen, Z. Chen, B. Chiaro, D. Chik, C. Chou, and Claes, “Quantum error correction below the surface code threshold,” Nature, 12 2024. [Online]. Available: https://www.nature.com/articles/s41586-024-08449-y
  • [26] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Physical Review A, vol. 86, no. 3, p. 032324, 2012. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.032324
  • [27] I. Quantum, “Ibm quantum: Development & innovation roadmap,” 2024. [Online]. Available: https://www.ibm.com/quantum/assets/IBM Quant um Developmen & Innovation Roadmap Explainer 2024-Update.pdf
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e49f6f9f-a833-4836-bf2f-814667e0bd43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.