PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solar air heater performance prediction using artificial neural network technique with relevant input variables

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar air heater (SAH) is an important device for solar energy utilization which is used for space heating, crop drying, timber seasoning etc. Its performance mainly depends on system parameters, operating parameters and meteorological parameters. Many researchers have been used these parameters to predict the performance of SAH by analytical or conventional approach and artificial neural network (ANN) technique, but performance prediction of SAH by using relevant input parameters has not been done so far. Therefore, relevant input parameters have been considered in this study. Total ten parameters were used such as mass flow rate, ambient temperature, wind speed, relative humidity, fluid inlet temperature, fluid mean temperature, plate temperature, wind direction, solar elevation and solar intensity to find out the relevant parameters for ANN prediction. Seven different neural models have been constructed using these parameters. In each model 10 to 20 neurons have been selected to find out the optimal model. The optimal neural models for ANN-I, ANN-II, ANN-III, ANN-IV, ANN-V, ANN-VI and ANN-VII were obtained as 10-17-1, 8-14-1, 6-16-1, 5- 14-1, 4-17-1, 3-16-1 and 2-14-1, respectively. It has been found that ANN-II model with 8-14-1 is the optimal model as compared to other neural models. Values of the sum of squared errors, mean relative error, and coefficient of determination were found to be 0.02138, 1.82% and 0.99387, respectively, which shows that the ANN-II developed with mass flow rate, ambient temperature, inlet and mean temperature of air, plate temperature, wind speed and direction, relative humidity, and relevant input parameters performed better. The above results show that these eight parameters are relevant for prediction.
Rocznik
Strony
255--282
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Energy and Environmental Engineering, Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, 491107, India
  • Department of Energy and Environmental Engineering, Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, 491107, India
  • Department of Energy and Environmental Engineering, Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, 491107, India
Bibliografia
  • [1] Sukhatme S.P., Nayak J.K.: Solar Energy. Principles of Thermal Collection and Storage. Tata McGraw Hill, New Delhi 1996.
  • [2] Duffie J.A., Beckman W.A.: Solar Engineering of Thermal Processes (3rd Edn.). Wiley Interscience, New York 2006.
  • [3] Ghritlahre H.K.: Performance evaluation of solar air heating systems using artificial neural network. PhD thesis, National Institute of Technology, Jamshedpur, India, 2019.
  • [4] Haykin S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York 1994.
  • [5] Kalogirou S.A.: Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 5(2001), 373–401.
  • [6] Hamed M.M., Khalafallah M.G., Hassanien E.A.: Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Model. Softw. 19(2004), 10, 919–928.
  • [7] Islamoglu Y., Kurt A.: Heat transfer analysis using ANNs with experimental data for air flowing in corrugated channels. Int. J. Heat Mass Tran. 47(2004), 1361–1365.
  • [8] Kalogirou S.A.: Prediction of flat-plate collector performance parameters using artificial neural networks. Sol. Energy 80(2006), 3, 248–259.
  • [9] Hosoz M., Ertunc H.M., Bulgurcu H.: Performance prediction of a cooling tower using artificial neural network. Energ. Convers. Manage. 48(2007), 1349–59.
  • [10] Xie H., Liu L., Ma F., Fan H.: Performance prediction of solar collectors using artificial neural networks. In: Proc. Int. Conf. on Artificial Intelligence and Computational Intelligence (2009) DOI: 10.1109/AICI.2009.344.
  • [11] Azadeh A., Maghsoudi A., Sohrabkhani S.: An integrated artificial neural networks approach for predicting global radiation. Energ. Convers. Manage. 50(2009), 6, 1497–1505.
  • [12] Mohanraj M., Jayaraj S., Muraleedharan C.: Exergy analysis of direct expansion solarassisted heat pumps using artificial neural networks. Int. J. Energy Res. 33(2009), 1005–1020.
  • [13] Tan C.K., Ward J., Wilcox S.J., Payne R.: Artificial neural network modelling of the thermal performance of a compact heat exchanger. Appl. Therm. Eng. 29(2009), 17–18, 3609–3617.
  • [14] Oğuz H., Sarıtas I., Baydan H.E.: Prediction of diesel engine performance using biofuels with artificial neural network. Expert Syst. Appl. 37(2010), 9, 6579–6586.
  • [15] Chávez-Ramírez A.U., Muñoz-Guerrero R., Durón-Torres S.M., Ferraro M., Brunaccini G., Sergi F., Antonucci V., Arriagaa L.G.: High power fuel cell simulator based on artificial neural network. Int. J. Hydrogen Energ. 35(2010), 21, 12125–12133.
  • [16] Kamar H.M., Ahmad R., Kamsah N.B., Mustafa A.F.M.: Artificial neural networks for automotive air-conditioning systems performance prediction. Appl. Therm. Eng. 50(2013), 1, 63–70.
  • [17] Kalogirou S.A., Mathioulakis E., Belessiotis V.: Artificial neural networks for the performance prediction of large solar systems. Renew. Energy 63(2014), 90–97.
  • [18] Yaïci W., Entchev E.: Performance prediction of a solar thermal energy system using artificial neural networks. Appl. Therm. Eng. 73(2014), 1348–1359.
  • [19] Esfe M.H., Wongwises S., Naderi A., Asadi A., Safaei M.R., Rostamian H., Dahari M., Karimipour A.: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass 66 (2015), 100–104.
  • [20] Jani D.B., Mishra M., Sahoo P.K.: Performance prediction of solid desiccant – vapor compression hybrid air-conditioning system using artificial neural network. Energy 103(2016), 618–629.
  • [21] Mathioulakis E., Panaras G., Belessiotis V.: Artificial neural networks for the performance prediction of heat pump hot water heaters. Int. J. Sust. Energy 37(2018), 2, 173–192.
  • [22] Alnaqi A.A., Moayedi H., Shahsavar A., Nguyen T.K.: Prediction of energetic performance of a building integrated photovoltaic/ thermal system thorough artificial neural network and hybrid particle swarm optimization models. Energ. Convers. Manage. 183(2019), 137–148.
  • [23] Esen H., Ozgen F., Esen M., Sengur A.: Artificial neural network and wavelet neural network approaches for modelling of a solar air heater. Expert Syst. Appl. 36(2009), 11240–11248.
  • [24] Cakmak G., Yıldız C.: The prediction of seedy grape drying rate using a neural network method. Comput. Electron. Agric. 75(2011), 132–138.
  • [25] Caner M., Gedik E., Keçebas A.: Investigation on thermal performance calculation of two type solar air collectors using artificial neural network. Expert Syst. Appl. 38(2011), 1668–74.
  • [26] Kamthania D., Tiwari G.N.: Performance analysis of a hybrid photovoltaic thermal double pass air collector using ANN. Appl. Sol. Energy 48(2012), 3, 186–192.
  • [27] Benli H.: Determination of thermal performance calculation of two different types solar air collectors with the use of artificial neural networks. Int. J. Heat Mass Tran. 60(2013), 1–7.
  • [28] Hamdan M.A., Abdelhafez E.A., Hamdan A.M., HajKhalil R.A.: Heat transfer analysis of a flat-plate solar air collector by using an artificial neural network. J. Infrastruct. Syst. 2014. DOI: 10.1061/(ASCE)IS.1943-555X.0000213.
  • [29] Ghritlahre H.K., Prasad R.K.: Prediction of thermal performance of unidirectional flow porous bed solar air heater with optimal training function using Artificial Neural Network. Energy Proced. 109(2017), 369–376.
  • [30] Ghritlahre H.K., Prasad R.K.: Energetic and exergetic performance prediction of roughened solar air heater using artificial neural network. Ciência e Técnica Vitivinícola 32(2017), 11, 2–24.
  • [31] Ghritlahre H.K., Prasad R.K.: Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP, GRNN, and RBF models of ANN technique. Therm. Sci. Eng. Progress 6(2018), 226–235.
  • [32] Ghritlahre H.K., Prasad R.K.: Development of optimal ANN model to estimate the thermal performance of roughened solar air heater using two different learning algorithms. Annals of Data Science 5(2018), 3, 453–467.
  • [33] Ghritlahre H.K.: Development of feed-forward back-propagation neural model to predict the energy and exergy analysis of solar air heater. Trends Renew. Energ. 4(2018), 213–235. DOI: 10.17737/tre.2018.4.2.0078.
  • [34] Ghritlahre H.K., Prasad R.K.: Application of ANN technique to predict the performance of solar collector systems – A review. Renew. Sust. Energ. Rev. 84(2018), 75–88.
  • [35] Ghritlahre H.K., Prasad R.K,: Exergetic performance prediction of roughened solar air heater using artificial neural network. Strojniškivestnik – J. Mech. Eng. 64(2018), 3, 195–206.
  • [36] Ghritlahre H.K., Prasad R.K.: Investigation on heat transfer characteristics of roughened solar air heater using ANN technique. IJHT 36(2018), 1, 102–110.
  • [37] Ghritlahre HK, Prasad RK.: Prediction of heat transfer of two different types of roughened solar air heater using Artificial Neural Network technique. Therm. Sci. Eng. Prog. 8(2018), 145–153.
  • [38] Ghritlahre H.K., Prasad R.K.: Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique. J. Environ. Manage. 223(2018), 566–575.
  • [39] Ghritlahre H.K., Prasad R.K.: Prediction of exergetic efficiency of arc shaped wire roughened solar air heater using ANN model. IJHT 36(2018), 3, 1107–1115.
  • [40] Holman J.P.: Experimental Methods for Engineers. McGraw-Hill, New York 2007.
  • [41] Kline S.J., McClintock F.A.: Describe uncertainties in single sample experiments. Mech. Eng. (1953), 3–8.
  • [42] Ghritlahre H.K., Chandrakar P., Ahmad A.: A comprehensive review on performance prediction of solar air heaters using artificial neural network. Ann. Data Sci. (2019), 1–45.
  • [43] Ghritlahre H.K., Prasad R.K.: Modelling of back propagation neural network to predict the thermal performance of porous bed solar air heater. Arch. Thermodyn. 40(2019), 4, 103–128.
  • [44] Ahmad A., Ghritlahre H.K., Chandrakar P.: Implementation of ANN technique for performance prediction of solar thermal systems: A comprehensive review. Trends Renew. Energ. (TRE)6(2020), 12–36. DOI: 10.17737/tre.2020.6.1.00110.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e49caada-eab2-4a57-a532-3247309f606c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.