PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compressive properties, mechanical anisotropy and hardness analysis of Mg-Zn alloy under cross pre-compression

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Mg–6Zn wt.% (MZ-T6) magnesium (Mg) alloy was fabricated after heat treatment (783 K for 6 h and aging at 453 K for 24 h) of an extruded MZ Mg alloy. Later, the alloy was subjected to cross pre-compression along with different directions and strains and obtained MZ-1 and MZ-2Mg specimens. The MZ-1 was pre-compressed along with ED and then TD, whilst MZ-2 was pre-compressed along with ND and TD. Subsequently, the compressive properties were studied of MZ-T6, MZ-1, and MZ-2 specimens. The result displayed that the cross twinning and lenticular twinning significantly altered the < c > axis orientations from c-axes || normal direction (ND) of MZ-T6 Mg specimen towards c-axes || extruded direction (ED) and transverse direction (TD) in MZ-1 and MZ-2Mg specimens, respectively. The compressive yield strength and ultimate compressive strength were significantly increased along with all loading directions, and mechanical anisotropy was significantly reduced. These results are mainly attributed to twin-induced grain refinement and considerable changes in the texture. The concave down curves changed to sigmoidal curves in pre-compressed Mg specimens along with ND, which is the signature of the twinning and de-twinning phenomenon. While loading along ED and TD exhibited almost similar sigmoidal curves in all specimens, however, the curves displayed different deformation behavior and were evaluated based on strain hardening regimes. The hardness of MZ-1 and MZ-2 specimens was increased ~ 18 and ~ 23%, respectively, compared to the MZ-T6 specimen. Thus, cross pre-compression is a convenient technique to further enhance the applications of Mg alloys for industrial development.
Rocznik
Strony
355--367
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
Bibliografia
  • [1] Malik A, Wang Y, Nazeer F, Khan MA, Ali T, Ain QT. The both positive and negative effect of pre-strain on the mechanical response of extruded magnesium alloy. J Mark Res. 2020;9:14478–99.
  • [2] Weinberg K, Khosravani MR, Thimm B, Reppel T, Bogunia L, Aghayan S, Nötzel R. Hopkinson bar experiments as a method to determine impact properties of brittle and ductile materials. GAMM-Mitteilungen. 2018;41:e201800008.
  • [3] Song J, She J, Chen D, Pan F. Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloys. 2020;8:1–41.
  • [4] Torabi H, Faraji G, Masoumi A. Processing characterization of binary Mg-Zn alloys fabricated by a new powder consolidation combined severe plastic deformation method. J Alloys Compd. 2020;832:154922.
  • [5] Tong X, Wu G, Zhang L, Wang Y, Liu W, Ding W. J Magnes Alloys. 2020.
  • [6] Bayat-Tork N, Mahmudi R, Hoseini-Athar MM. Hot deformation constitutive analysis and processing maps of extruded Mg–Gd binary alloys. J Mark Res. 2020;9:15346–59.
  • [7] Najafi S, Mahmudi R. Enhanced microstructural stability and mechanical properties of the Ag-containing Mg–Gd–Y alloys. J Magnes Alloys. 2020;8:1109–19.
  • [8] Ma C, Yu W, Pi X, Guitton A. Effect of addition of minor amounts of Sb and Gd on hot tearing susceptibility of Mg-5Al-3Ca alloy. J Magnes Alloys. 2020;8:1084–9.
  • [9] Hu F, Zhao S, Gu G, Ma Z, Wei G, Yang Y, Peng X, Xie W. Strong and ductile Mg-0.4 Al alloy with minor Mn addition achieved by conventional extrusion. Mater Sci Eng A. 2020;795:139926.
  • [10] Guerza-Soualah F, Azzeddine H, Baudin T, Helbert A-L, Brisset F, Bradai D. Microstructural and textural investigation of an Mg–Dy alloy after hot plane strain compression. J Magnes Alloys. 2020;8:1198–207.
  • [11] Li J, Xie D, Yu H, Liu R, Shen Y, Zhang X, Yang C, Ma L, Pan H, Qin G. Microstructure and mechanical property of multi-pass low-strain rolled Mg-Al-Zn-Mn alloy sheet. J Alloys Compd. 2020;835:155228.
  • [12] Liu Y, Cheng W-L, Gu X-J, Liu Y-H, Cui Z-Q, Wang L-F, Wang H-X. J Magnes Alloys. 2020.
  • [13] Zhang L, Chen W, Zhang W, Wang W, Wang E. Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi–pass rolling with lowered temperature. J Mater Process Technol. 2016;237:65–74.
  • [14] Malik A, Wang Y, Nazeer F, Khan MA, Sajid M, Jamal S, Mingjun W. Deformation behavior of Mg-Zn-Zr magnesium alloy on the basis of macro-texture and fine-grain size under tension and compression loading along various directions. J Alloys Compd. 2021;858:740.
  • [15] Yawer AK, Zainalaadbeen AA, Abdulkader NJ. Effect of hybrid nanoparticles on compression strength of recycled composite Zn–Al alloy. Mater Today Proc. 2021;42:2095–101.
  • [16] Malik A, Wang Y, Huanwu C, Nazeer F, Khan MA. Microstructure evolution of Mg-Zn-Zr magnesium alloy against soft steel core projectile. J Mater Sci Technol. 2021;79:46–61.
  • [17] Xiong Y, Yu Q, Jiang Y. Deformation of extruded ZK60 magnesium alloy under uniaxial loading in different material orientations. Mater Sci Eng A. 2018;710:206–13.
  • [18] Malik A, Wang Y, Huanwu C, Nazeer F, Khan MA. J Magnes Alloys. 2020.
  • [19] Malik A, Wang Y, Nazeer F. Forces Mech. 2021; p. 100031.
  • [20] Yang Q, Jiang B, Song B, Zhang J, Pan F. Improving strength and formability of rolled AZ31 sheet by two-step twinning deformation. JOM. 2020;72(7):2551–60.
  • [21] Xin Y, Wang M, Zeng Z, Nie M, Liu Q. Strengthening and toughening of magnesium alloy by {1 0− 1 2} extension twins. Scripta Mater. 2012;66:25–8.
  • [22] Song B, Xin R, Zheng X, Chen G, Liu Q. Activation of multiple twins by pre-tension and compression to enhance the strength of Mg–3Al–1Zn alloy plates. Mater Sci Eng A. 2015;621:100–4.
  • [23] Song B, Xin R, Sun L, Chen G, Liu Q. Enhancing the strength of rolled ZK60 alloys via the combined use of twinning deformation and aging treatment. Mater Sci Eng A. 2013;582:68–75.
  • [24] Xin Y, Zhou X, Liu Q. Suppressing the tension–compression yield asymmetry of Mg alloy by hybrid extension twins structure. Mater Sci Eng A. 2013;567:9–13.
  • [25] Malik A, Wang Y, Huanwu C, Nazeer F, Khan MA. Dynamic mechanical behavior of magnesium alloys: a review. Int J Mater Res. 2019;110:1105–15.
  • [26] Asgari H, Odeshi AG, Szpunar JA, Zeng LJ, Olsson E. Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading. Mater Charact. 2015;106:359–67.
  • [27] Malik A, Wang Y, Huanwu C, Bhatti TM, Nazeer F, Malik A, Wang Y, Huanwu C, Bhatti TM, Nazeer F. Superplastic behavior of fine-grained extruded ZK61 Mg alloy. Results Phys. 2021;20:103731.
  • [28] Ma Q, El Kadiri H, Oppedal AL, Baird JC, Li B, Horstemeyer MF, Vogel SC. Twinning effects in a rod-textured AM30 Magnesium alloy. Int J Plast. 2012;29:60–76.
  • [29] He J, Liu T, Zhang Y, Tan J. Twin characteristics and flow stress evolution in extruded magnesium alloy AZ31 subjected to multiple loads. J Alloy Compd. 2013;578:536–42.
  • [30] Chen H, Liu T, Hou D, Shi D. Study on the paired twinning behavior in a hot rolled AZ31 magnesium alloy via interrupted in situ compression. Mater Sci Eng A. 2016;667:402–8.
  • [31] Malik A, Wang Y, Huanwu C, Nazeer F, Ahmed B, Khan MA, Mingjun W. Constitutive analysis, twinning, recrystallization, and crack in fine-grained ZK61 Mg alloy during high strain rate compression over a wide range of temperatures. Mater Sci Eng A. 2020;771:138649.
  • [32] Yang Q, Ghosh AK. Deformation behavior of ultrafine-grain (UFG) AZ31B Mg alloy at room temperature. Acta Mater. 2006;54:5159–70.
  • [33] Jiang MG, Xu C, Yan H, Fan GH, Nakata T, Lao CS, Chen RS, Kamado S, Han EH, Lu BH. Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Mater. 2018;157:53–71.
  • [34] Zhu SQ, Yan HG, Liao XZ, Moody SJ, Sha G, Wu YZ, Ringer SP. Mechanisms for enhanced plasticity in magnesium alloys. Acta Mater. 2015;82:344–55.
  • [35] Yu H, Kim YM, You BS, Yu HS, Park SH. Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy. Mater Sci Eng, A. 2013;559:798–807.
  • [36] Chen WZ, Wang X, Kyalo MN, Wang ED, Liu ZY. Yield strength behavior for rolled magnesium alloy sheets with texture variation. Mater Sci Eng A. 2013;580:77–82.
  • [37] Hong S-G, Park SH, Lee CS. Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 2010;58:5873–85.
  • [38] Li X, Zhang J, Hou D, Li Q. Compressive deformation and fracture behaviors of AZ31 magnesium alloys with equiaxed grains or bimodal grains. Mater Sci Eng A. 2018;729:466–76.
  • [39] Mokdad F, Chen DL, Li DY. Twin-twin interactions and contraction twin formation in an extruded magnesium alloy subjected to an alteration of compressive direction. J Alloy Compd. 2018;737:549–60.
  • [40] Xia D, Chen X, Huang G, Jiang B, Tang A, Yang H, Gavras S, Huang Y, Hort N, Pan F. Calculation of Schmid factor in Mg alloys: influence of stress state. Scripta Mater. 2019;171:31–5.
  • [41] Xu J, Guan B, Xin Y, Wei X, Huang G, Liu C, Liu Q. J Mater Sci Technol. 2021.
  • [42] Liu B-Y, Liu F, Yang N, Zhai X-B, Zhang L, Yang Y, Li B, Li J, Ma E, Nie J-F. Large plasticity in magnesium mediated by pyramidal dislocations. Science. 2019;365:73–5.
  • [43] Kaya M. A study on microstructure and fabrication of porous Mg-10Al alloy. Mater Manuf Processes. 2012;27:605–8.
  • [44] Zhang J, Liu S, Wu R, Hou L, Zhang M. Recent developments in high-strength Mg-RE-based alloys: focusing on Mg-Gd and Mg-Y systems. J Magnes Alloys. 2018;6:277–91.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e498b9e5-caf0-4ea8-aa2c-6c169d3537ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.