Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We address a unified convex combination approach to a class of switched uncertain nonlinear systems, focusing on quadratic stability and L2 gain. In each subsystem, there are norm-bounded uncertainties in the system matrix and nonlinear terms with quadratic constraints. The proposed convex combination is original and unified in the sense of incorporating not only the nominal subsystem matrices but also uncertainty and quadratic constraints in the same form. When there is no single subsystem having the desired performance but a convex combination of subsystems does, we design a switching law so that the switched system achieves the same performance. Moreover, the discussion is extended to switching state feedback and its application to a boost converter.
Rocznik
Tom
Strony
117--128
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430070, China
autor
- Department of Mathematical Sciences, Shibaura Institute of Technology, Saitama, 3378570, Japan
autor
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430070, China
Bibliografia
- [1] Alwan, M.S. and Liu, X. (2016). Recent results on stochastic hybrid dynamical systems, Journal of Control and Decision 3(1): 68-103.
- [2] Boyd, S., Ghaoui, L.E., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
- [3] Branicky, M.S. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control 43(4): 475-482.
- [4] Chang, Y., Zhai, G. and Fu, B. (2023). Quadratic stabilization and L2 performance design of switched uncertain nonlinear systems, Proceedings of the 23rd International Conference on Control, Automation and Systems (ICCAS 2023), Yeosu, Korea, pp. 127-132.
- [5] Chang, Y., Zhai, G., Fu, B. and Xiong, L. (2019). Quadratic stabilization of switched uncertain linear systems: A convex combination approach, IEEE/CAA Journal of Automatica Sinica 6(5): 1116-1126.
- [6] Chang, Y., Zhai, G., Xiong, L. and Fu, B. (2022a). An extended convex combination approach for quadratic L2 performance analysis of switched uncertain linear systems, IEEE/CAA Journal of Automatica Sinica 9(9): 1706-1709.
- [7] Chang, Y., Zhai, G., Xiong, L. and Fu, B. (2022b). New development in quadratic L2 performance of switched uncertain stochastic systems, Electronics 11(13): 1963.
- [8] DeCarlo, R., Branicky, M.S., Pettersson, S. and Lennartson, B. (2000). Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE 88(7): 1069-1082.
- [9] Egidio, L.N. and Deaecto, G.S. (2021). Dynamic output feedback control of discrete-time switched affine systems, IEEE Transactions on Automatic Control 66(9): 4417-4423.
- [10] Feron, E. (1996). Quadratic stabilizability of switched system via state and output feedback, Technical Report CICS-P-468, Massachusetts Institute of Technology, Cambridge.
- [11] Goebel, R., Sanfelice, R. and Teel, A. (2009). Hybrid dynamical systems, IEEE Control Systems Magazine 29(2): 28-93.
- [12] Hespanha, J.P. and Morse, A.S. (1999). Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, USA, pp. 2655-2660.
- [13] Ji, Z., Wang, L., Xie, G. and Hao, F. (2004). Linear matrix inequality approach to quadratic stabilisation of switched systems, IEE Proceedings - Control Theory and Applications 151(3): 289-294.
- [14] Khargonekar, P.P., Petersen, I.R. and Zhou, K. (1990). Robust stabilization of uncertain linear systems: Quadratic stabilizability and H∞ control theory, IEEE Transactions on Automatic Control 35(3): 356-361.
- [15] Leth, J. and Wisniewski, R. (2014). Local analysis of hybrid systems on polyhedral sets with state-dependent switching, International Journal of Applied Mathematics and Computer Science 24(2): 341-355, DOI: 10.2478/amcs-2014-0026.
- [16] Liberzon, D. (2003). Switching in Systems and Control, Birkhäuser, Boston.
- [17] Liberzon, D. and Morse, A.S. (1999). Basic problems in stability and design of switched systems, IEEE Control Systems Magazine 19(5): 59-70.
- [18] Liu, X. and Li, S. (2022). Optimal control for a class of impulsive switched systems, Journal of Control and Decision 10(4): 529-537.
- [19] Morse, A.S. (1996). Supervisory control of families of linear set-point controllers. Part 1: Exact marching, IEEE Transactions on Automatic Control 41(10): 1413-1431.
- [20] Petersen, I.R. (1987). A stabilization algorithm for a class of uncertain linear systems, Systems & Control Letters 8(4): 351-357.
- [21] Rantzer, A. (1996). On the Kalman-Yakubovich-Popov lemma, Systems & Control Letters 28(1): 7-10.
- [22] Sánchez, M. and Bernal, M. (2019). LMI-based robust control of uncertain nonlinear systems via polytopes of polynomials, International Journal of Applied Mathematics and Computer Science 29(2): 275-283, DOI: 10.2478/amcs-2019-0020.
- [23] Sassano, M., Mylvaganam, T. and Astolfi, A. (2019). An algebraic approach to dynamic optimisation of nonlinear systems: A survey and some new results, Journal of Control and Decision 6(1): 1-29.
- [24] Shorten, R., Wirth, F., Mason, O., Wulff, K. and King, C. (2007). Stability criteria for switched and hybrid systems, SIAM Review 49(4): 545-592.
- [25] Siljak, D.D. and Stipanovic, D.M. (2000). Robust stabilization of nonlinear systems: The LMI approach, Mathematical Problems in Engineering 6(5): 461-493.
- [26] Stankovic, S.S., Stipanovic, D.M. and Siljak, D.D. (2007). Decentralized dynamic output feedback for robust stabilization of a class of nonlinear interconnected systems, Automatica 43(5): 861-867.
- [27] van der Schaft, A. and Schumacher, H. (2000). An Introduction to Hybrid Dynamical Systems, Springer, London.
- [28] Wicks, M.A., Peleties, P. and DeCarlo, R.A. (1998). Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems, European Journal of Control 4(2): 140-147.
- [29] Yang, H., Jiang, B., Cocquempot, V. and Lu, L. (2012). Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approach, International Journal of Applied Mathematics and Computer Science 22(1): 87-97, DOI: 10.2478/v10006-012-0006-9.
- [30] Yang, Y., Karimi, H.R. and Xiang, Z. (2013). Robust H∞ switching rule design for boost converters with uncertain parameters and disturbances, Abstract and Applied Analysis 2013: 120543, DOI: 10.1155/2013/120543.
- [31] Yu, Q. and Zhai, G. (2020). Stability analysis of switched systems under φ-dependent average dwell time approach, IEEE Access 8: 30655-30663, DOI: 10.1109/ACCESS.2020.2971267.
- [32] Xiao, M., Zhai, G. and Huang, C. (2020). Quadratic stabilisation of switched affine systems, Journal of Control and Decision 7(1): 1-23.
- [33] Xu, X. and Antsaklis, P.J. (2000). Stabilization of second-order LTI switched systems, International Journal of Control 73(14): 1261-1279.
- [34] Zhai, G., Hu, B., Yasuda, K. and Michel, A.N. (2000). Piecewise Lyapunov functions for switched systems with average dwell time, Asian Journal of Control 2(3): 192-197.
- [35] Zhai, G., Lin, H. and Antsaklis, P.J. (2003). Quadratic stabilizability of switched linear systems with polytopic uncertainties, International Journal of Control 76(7): 747-753.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e498a4fc-6125-494a-83a7-5947d24924a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.