PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-objective optimization of stope structure parameters in broken rock conditions using grey relational analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wielo-kryterialna optymalizacja parametrów struktury przodka wybierkowego w warunkach pękania skał przy wykorzystaniu „szarej” analizy relacyjnej
Języki publikacji
EN
Abstrakty
EN
In order to optimize the stope structure parameters in broken rock conditions, a novel method for the optimization of stope structure parameters is described. The method is based on the field investigation, laboratory tests and numerical simulation. The grey relational analysis (GRA) is applied to the optimization of the stope structure parameters in broken rock conditions with multiple performance characteristics. The influencing factors include stope height, pillar diameter, pillar spacing and pillar array pitch, the performance characteristics include maximum tensile strength, maximum compressive strength and ore recovery rate. The setting of influencing factors is accomplished using the four factors four levels Taguchi experiment design method, and 16 experiments are done by numerical simulation. Analysis of the grey relational grade indicates the first effect value of 0.219 is the pillar array pitch. In addition, the optimal stope structure parameters are as follows: the height of the stope is 3.5 m, the pillar diameter is 3.5 m, the pillar spacing is 3 m and the pillar array pitch is 5 m. In-situ measurement shows that all of the pillars can basically remain stable, ore recovery rate can be ensured to be more than 82%. This study indicates that the GRA method can efficiently applied to the optimization of stope structure parameters.
PL
W pracy zaproponowano nową metodę optymalizacji parametrów struktury przodka wybierkowego prowadzonego w warunkach pękania skał. Metoda opiera się na badaniach terenowych, wykorzystuje także badania laboratoryjne oraz symulacje numeryczne. Do optymalizacji parametrów struktury przodka wybierkowego prowadzonego w warunkach pękania skał dla wielu wariantów charakterystyki górotworu wykorzystano ‘szarą’ analizę relacyjną (GRA – Grey Relational Analysis). Uwzględnione czynniki wpływu to wysokość przodka, średnica filarów, rozstaw filarów, rozmieszczenie filarów oraz charakterystyki górotworu: maksymalna wytrzymałość na rozciąganie oraz ściskanie oraz uzysk rudy. Ustawienia czynników wpływu dokonano z wykorzystaniem czterech czynników i dla czterech poziomów wg metody Taguchi planowania eksperymentów; ponadto 16 eksperymentów wykonano z wykorzystaniem symulacji numerycznych. Wyniki ‘szarej’ analiza relacyjnej wskazują, że wartość efektywna dla pierwszego z czynników, czyli rozmieszczenia filarów, wyniosła 0.219. Ponadto, otrzymano następujące optymalne parametry przodka: wysokość przodka 3.5 m; średnica filarów 3.5 m, rozstęp pomiędzy filarami 3 m, rozciągłość filarów 5 m. Pomiary przeprowadzone in situ wykazały, że wszystkie filary zasadniczo powinny zachować stabilność, a uzysk rudy przekroczyć może 82%. Wyniki wskazują, że ‘szara’ analiza relacyjna może być z powodzeniem wykorzystywana do optymalizacji parametrów struktury przodka wybierkowego.
Rocznik
Strony
269--282
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory for High Efficient Mining and Safety in Metal Mine, Ministry of Education, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
autor
  • Key Laboratory for High Efficient Mining and Safety in Metal Mine, Ministry of Education, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
autor
  • Key Laboratory for High Efficient Mining and Safety in Metal Mine, Ministry of Education, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
autor
  • Key Laboratory for High Efficient Mining and Safety in Metal Mine, Ministry of Education, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
Bibliografia
  • [1] Aslan N., Shahrivar A.A., Abdollahi H., 2012. Multi-objective optimization of some process parameters of a lab-scale thickener using grey relational analysis. Separation & Purification Technology 90, 18, 189-195.
  • [2] Bagde M.N., Sangode A.G., Jhanwar J.C., 2017. Evaluation of stoping parameters through instrumentation and numerical modelling in manganese mine in India: a case study. Procedia Engineering 191, 10-19.
  • [3] Bai X., Marcotte D., Simon R., 2013. Underground stope optimization with network flow method. Computers & Geosciences 52, 1, 361-371.
  • [4] Chen S.M., Wu A.X., Wang Y.M., 2017. Optimization research on stope structure parameters in broken rock conditions based on the response surface method. Chinese Journal of Rock Mechanics & Engineering 36, 3499-3508.
  • [5] Chen Z., Wang J., Wang Y., 2001. A three-dimensional slope stability analysis method using the upper bound theorem part ii: numerical approaches, applications and extensions. International Journal of Rock Mechanics & Mining Sciences 38, 3, 369-378.
  • [6] Cheng J., Zhang Q.L., Xue X.L., 2014. Optimization of stope structure parameters based on AHP and topsis method. Mining & Metallurgical Engineering 34, 1, 1-5 (in Chinese).
  • [7] Deepanraj B., Sivasubramanian V., Jayaraj S., 2016. Multi-response optimization of process parameters in biogas production from food waste using Taguchi-Grey relational analysis. Energy Conversion & Management 141, 429-438.
  • [8] Hao J., Shi K.B., Chen G.M., 2015. Grey relation analysis of deformation sensitivity based on probability distribution models of surrounding rock mechanical parameters. Rock & Soil Mechanics 36, 3, 854-860.
  • [9] Kang P., Xi-Bing L.I., Peng S.Q., 2011. Optimization of frame stope structure parameters based on response surface method in under-sea mining. Journal of Central South University (Science and Technology) 42, 8, 2417-2422 (in Chinese).
  • [10] Kao P.S., Hocheng, H., 2003. Optimization of electrochemical polishing of stainless steel by grey relational analysis. Journal of Materials Processing Technology 140, 1, 255-259.
  • [11] Luo Z.Q., Guan J.L., Feng F.K., 2012. Stope structural parameters of panel isolation pillar numerical optimization. Journal of Mining & Safety Engineering 29, 2, 261-264 (in Chinese).
  • [12] Kumar S.S., Uthayakumar M., Kumaran S.T., 2015. Parametric optimization of wire electrical discharge machining on aluminium based composites through grey relational analysis. Journal of Manufacturing Processes 20, 33-39.
  • [13] Manouchehrian A., Cai M., 2015. Si mulation of unstable rock failure under unloading conditions. Canadian Geotechnical Journal 53, 4, 1333-1339.
  • [14] Nelabhotla D.M., Jayaraman T.V., Asghar K., 2016. The optimization of chemical mechanical planarization processparameters of c-plane gallium-nitride using taguchi method and grey relational analysis. Materials & Design 104, 392-403.
  • [15] Qin L., Liu Z.X., Liu A.H., 2010. Chaotic optimization of structural parameters in gold mining field. Journal of Mining & Safety Engineering 27, 4, 548-552 (in Chinese).
  • [16] Rajesh S., Rajakarunakaran S., Sudhkarapandian R., 2013. Optimization of the red mud-aluminum composite in the turning process by the grey relational analysis with entropy. Journal of Composite Materials 48, 17, 2097-2105.
  • [17] Rajesh R., Ravi V., 2015. Supplier selection in resilient supply chains: a grey relational analysis approach. Journal of Cleaner Production 86, 343-359.
  • [18] Sameera S.D.S., Erkan T., Ali A.M.W., 2015. Designing an optimal stope layout for underground mining based on a heuristic algorithm. International Journal of Mining Science & Technology 25, 5, 767-772.
  • [19] Shnorhokian S., Mitri H.S., Moreau-Verlaan L., 2015. Stability assessment of stope sequence scenarios in a diminishing ore pillar. International Journal of Rock Mechanics & Mining Sciences 74, 103-118.
  • [20] Song W.D., Wang D.X., Tang Y.N., 2011. Study on sublevel open stoping with subsequent backfilling mining method stope parameters optimization. Advanced Materials Research, 250-253, 1-4, 1567-1571.
  • [21] Mallı T., Yetkin M.E., Özfırat M.K., Kahraman B., 2017. Numerical analysis of underground space and pillar design in metalliferous mine. Journal of African Earth Sciences 134, 365-372.
  • [22] Tripathy S., Tripathy D.K., 2016. Multi-attribute optimization of machining process parameters in powder mixed electrodischarge machining using topsis and grey relational analysis. Engineering Science & Technology An International Journal 19, 1, 62-70.
  • [23] Wang Z., Lei T., Chang X., 2015. Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: a study using cornstalks in china. Applied Energy 157, 523-532.
  • [24] Wang Y., Zhang C., Jiang G., 2016. Priority-sequence of mineral resources’ development and utilization based on grey relational analysis method. International Journal of Mining Science and Technology 26, 3, 395-400.
  • [25] Guo Y., Hou K., Li W., 2014. Numerical optimization of stope structural parameters of complex inclined thin orebody in mengnuo lead-zinc mine. Electronic Journal of Geotechnical Engineering 19, 9479-9490.
  • [26] Zhang G., 2005. Experimental research on structure parameterof non-pillar sublevel caving along vein of zhangjiawa iron mine. China Mining Magazine 14, 9, 45-48 (in Chinese).
  • [27] Zhou K., Gou G., Luo J., 2013. Optimization of structural parameters and stability of stope based on mathew method and numerical simulation method. Science & Technology Review 31, 30, 34-38.
  • [28] Zuo W., Jiaqiang E., Liu X., Peng Q., 2016. Orthogonal experimental design and fuzzy grey relational analysis for emitter efficiency of the micro-cylindrical combustor with a step. Applied Thermal Engineering 103, 945-951.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4965a7a-c098-4b64-aa91-233d5ba71680
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.